
 1

Chapter 8 The FIR Filters

In this chapter

Ideal Filters

FIR Filter design

Windowing

 2

Introduction

The Digital Filters are classified as, IIR or Infinite Impulse Response filters and FIR or

Finite Impulse Response filters. We have discussed the IIR filters in the previous chapter

and designed a few, including; the high-pass, low-pass, band-pass and band-stop filters.

In all, the computation time was fast, as it did not take much to calculate few poles and

few zeros, but the phase response was generally poor. The initial transient response in IIR

filters lingers on for a long time. The filters require values from the past output and some

parts of the initial values are always present in the current output, in theory at least.

Though, in practice, the fraction grows less and less and eventually reaches 0, but it

might take a very long time before the floating-point arithmetic precision gives way to

the accuracy of the calculated numbers. The linear phase response makes the FIR filters

suitable candidates where the phase information has an important role to play.

We now discuss a different method of obtaining a filter Transfer Function that would

simply rely upon the values from the past input but not the past outputs, as such; there is

a uniform phase delay with no distortion. The linear phase is a definite plus, where phase

delay is critical and this is the Fourier Transform method of designing digital filters. The

figures and the tables in this chapter are being created with the help of Scilab and Matlab

scripts and listings of the instructions are provided in Appendix A and B. It is

recommended that the reader should exercise the instructions in the scripts and gain

confidence in filter design method by seeing the response interactively. The starting point

for the FIR filter design is the ideal frequency response.

Ideal Filters

The Figure 8.1 is a repeat of the ideal filter response that we have seen before. Notice the

rectangular shape and the sharp cutoff point that marks the transition from the pass-band

to the stop-band, there is practically no transition-band and the gain is either 0 or 1. Such

an ideal filter, if we could achieve somehow, would solve all our filtering problems, but

in reality (as you will see later), we cannot achieve such perfection. We can only try to

get closer. In FIR filters, we seek the function that closely matches the ideal response.

Let’s work backward and think; if there was a frequency response, close to the ideal

response, then there must have been a time based impulse response that generated the

ideal frequency response. The Fourier Transform of the ideal response would have

impulse response as its coefficients, and this is basis of Fourier Transform method of

designing digital filters. Once we know the impulse response, it is easier to formulate a

filter by performing convolution of the input samples with the impulse response, just as

we did in the previous section of the IIR filter design.

The objective is to find the coefficients of the Fourier series that generated the ideal

response (or close to it) and that Fourier series is the desired filter Transfer Function.

 3

Let’s chose a low pass filter as shown in the Figure 8.2. (As usual, we will be denoting

the discrete sampling frequency with the symbol .) Ignoring for a moment the negative

frequencies, such an ideal frequency response has a well-defined period to with

the pass band region from to (where is the normalized sampling frequency of

radians per sample), center on 0. This is a perfect low pass filter with the cutoff sampling

frequency of . The values within the pass band region are 1 and outside this region,

they are 0, thus forming a function with the values as shown in the following series,

 0,0,0,..0,0,0,1,1,1…1,1,1,0,0,0..0,0,0

What function has such a rectangular shape? To answer this question, let’s revisit the

Fourier Transform and produce the coefficients that form the output.

2 2
5

2

5

4

2 2
5

3

5

2 2
5

3

5

3

(a)

(d)

(c)

(b)

2 2
5

2

5

2

 4

**** Insert Figure 8.1 here ****

Figure 8.1. The ideal frequency response; a) low pass filter, b) high pass filter, c) band

pass filter, d) band stop filter

The Fourier series representation of the ideal frequency

response

A discontinuous function such as the one in Equation 8.2 may be expressed in terms of its

Fourier series. The function itself is a periodic function and according to the definition, a

periodic function)(xf may be represented as an infinite series of sin and cos, whose

amplitudes (or coefficients) nc may be computed from the function itself, as shown in

Equation 8.1 and 8.2. (See chapter one for a discussion on extracting the Fourier

Coefficients.)

n

xj

necxf)(8.1

The coefficients,

dxetfc xj

n

0

)(
2

1
 8.2

**** Insert Figure 8.2 here ****

Figure 8.2. The ideal low pass filter with the cutoff frequency
5

2
 to

5

2

2 2
5

2

5

2

 5

In digital filters, we have a reverse situation, the frequency response)(H is a periodic

function, and the coefficients are time based. The Discrete Time Fourier Transform of the

ideal filter Transfer Function of the Figure 8.2 is given in Equation 8.3.

n

nj

nehH)(8.3

The coefficients nh are obtained using the inverse Discrete Time Fourier Transform,

deHnh
c

c

nj

cc

)(
1

)(8.4

Notice; the periodic response function h(n) of Equation 8.4 has a period of to ,

but the pass band region from 52c to 52c (example form Figure 8.1) is

the only nonzero part, thus, the integral is performed over the pass band region only. In

our case cc , substituting the value of the Transfer Function (between c to c)

and integrating to obtain the expression for the impulse response h(n) we get,

cc

c

jn

c

jn

jn

e
denh

 2

1
1

2

1
)(

 n

n

j

ee

n
nh c

jnjn)sin(
)

2
(

1
)(

c

cc

n

n
nh

)sin(
)(

Substituting the value of nh in Equation 8.3, we get the Transfer Function)(H as

n

nj

c

cc e
n

n
H)

)sin(
()(

 8.5

The coefficients h(n) of the Equation 8.5 are equivalent of the time based impulse

response of the ideal frequency response. According to Fourier, we need infinite numbers

of these coefficients to truly represent the given periodic function.

From a practical standpoint, the number of coefficients is a matter of preference; since, a

filter with infinite coefficients is inconceivable, we limit ourselves to a finite number N.

 6

We will see the consequences of choosing a higher or lower value later in the section, but

next, we discuss its magnitude response obtained from the filter Transfer Function.

Filter Transfer Function

A Transfer Function of a filter is a function of frequency and it is the Fourier Transform

of the filter’s impulse response. It is also the ratio of the Transform of the output over the

Transform of the input. A plot of the Transfer Function vs. frequency variable shows

how the output magnitude varies with the different input frequencies. Taking the Fourier

Transform of the impulse response of an ideal filter, we describe the Transfer Function

as,

n

jn

n

z

z eh
X

Y
H)(

The ideal frequency response required infinite summation, but suppose we truncate the

series to a finite 2N+1 number of terms. The Transfer Function with these reduced

numbers evaluated is given in Equation 8.6.

N

Nn

nj

nehH)(

Nj

N

Nj

N

Nj

N

Nj

N ehehehehehH

)1(

)1(

0

0

)1(

)1()(8.6

The Equation 8.6 is simply a polynomial in hn evaluated on the unit circle. (See Appendix

B Chapter 8, fig8_17 through fig8_21 for the Scilab instructions to perform the

evaluation), But we could also use the following derivative and obtain a close form

expression of the filter Transfer Function.

Substituting the equality,

nn hh

)cos(2 nee njnj

We obtain the following equation for the Transfer Function,

 NhNhhhhH Nn cos2)1cos(22cos2cos2)0()(121

N

k

knhhH
1

cos)(2)0()(8.7

 7

There is no imaginary component in the Equation 8.7 that means the filter has linear

phase response, and the Transfer Function magnitude is simply,

N

k

knhhH
1

cos)(2)0()(

Substituting the values for nh computed with the Equation 8.7 we obtain an expression

for the amplitude response.

With the knowledge of filter coefficients and the design of magnitude response, we are

ready to implement FIR filters.

FIR Filter design

We will be discussing the four different kinds of filters, the low-pass, the high-pass, the

band-pass and the band-stop filters. The frequency response of each is depicted in the

Figure 8.1. Implementing a filter is simply a matter of finding the right impulse response

and developing a convolution algorithm that would convolve the input samples with the

appropriate impulse response, (similar to the IIR filter of Chapter 7). Thus, the quest is to

obtain the right impulse response. We begin with the implementation of a low-pass filter.

Low-pass Filters

A filter is known by its frequency response and is characterized by its cutoff frequencies.

From implementation point of view, the number of coefficients or filter-taps matter as

they affect the speed of execution. Though, choosing a large number of filter coefficients

brings the filter response close to the ideal response but it may slow down the execution.

In our example filter, we chose 21 coefficients. The cutoff frequency is determined with

respect to the sampling frequency. If the sampling rate is10k samples per second then a

cutoff frequency of 2.5khz means 25.0C .

As usual, we will perform convolution of the 21-points (of the impulse response) with the

kth input samples][kx to produce the kth filter output][ky . (the reason for picking an odd

number is to have a symmetry on 0).

10

10

][][
n

n nkxhky

The first step in filter design is to compute the impulse response corresponding to the

Frequency response. We have already developed an expression for the low-pass filter by

taking the inverse Fourier Transform as shown in the derivative of Equation 8.5. Ideally,

 8

we should evaluate the equation for n to n , but for 21 coefficients, we would

use 10n to 10n . For 0n the evaluation is straightforward but to avoid the

divide by 0 error (in case of n=0), the L’Hospital’s rule could be used;

CCCCC n

ndnd

ndnd
h

)cos(

)(

)sin()(
0 for 0n

C

CC

n

n
nh

)sin(
][

 for 0n 8.8

The impulse response given in Equation 8.8 is of the form xxsin , commonly known as

sinc function. Rectangular functions of either time or frequency domain usually transform

into sinc functions, when Transformed from one domain to another. The public domain

software ‘Scilab’ has a built-in sinc function that you can use to compute the coefficients

of the desired filter. The Coefficients given in Table 8.1 were generated with the help of

the Scilab program and the listing is provided in Appendix B.

Example 8.1. Design a low pass filter with the cutoff frequency of 1/8
th

 of the Nyquist

frequency.

We merely have to find the filter coefficients corresponding to the cutoff frequency. It

should be noted that the actual cutoff frequency is 2 times the value of the desired

frequency, since we measure cutoff frequency with respect to the actual sampling

frequency. Substituting the value of 25.0C and evaluating the Equation 8.1 for

10n to 10n , we get 21 coefficients as described in the Table 8.1.

The Table 8.1 describes the filter coefficients h(n) for 10n to 10n . See Appendix

B Chapter 8 for the Scilab listings to generate the coefficients.

h(-10)=h(10) .0318310

h(-9)=h(9) .0250088

h(-8)=h(8) 0

h(-7)=h(7) -.0321542

h(-6)=h(6) -.0530516

h(-5)=h(5) -.0450158

h(-4)=h(4) 0

h(-3)=h(3) .0750264

h(-2)=h(2) .1591549

h(-1)=h(1) .2250791

h(0) .25

 9

Convolving the impulse response with the input samples produces the filter output,

10

10

][][
n

n nkxhky 8.9

If k=0 is the current instance then the Equation 8.9 is expanded as,

]9[]10[]0[]9[]10[]0[9100910 xhxhxhxhxhy

You may recognize that the filter output of Equation 8.8 is non-causal, as it requires

values from the future. One way to solve the problem is to shift the filter coefficients so

that they start from 0, instead of –10, as shown in the Figure 8.3. Being a linear and time

invariant system, the impulse response in the future is the same as impulse response in

the past. Our modified causal filter is,

20

0

][][
n

n nkxhky

**** Insert Figure 8.3 here ****

Figure 8.3. Impulse response of ideal low pass filter with cutoff frequency of 1/8
th

 of the

Nyquist, a) non-causal, b) causal

 10

The Figure 8.4 is a plot of the frequency response of the low pass filter of Example 8.1,

together with the ideal frequency response for a comparison.

**** Insert Figure 8.4 here ****

Figure 8.4. Magnitude response of the 21-tap low pass filter (cutoff frequency

5

2
) compared to the ideal filter.

A logarithmic bode plot of the frequency response of Example 8.1 is presented in the

Figure 8.5 to highlight the side lobe amplitude The normal plot shows the pass band

ripples overshoot of 7% near the transition band.

 11

***** Insert Figure 8.5 here *****

Figure 8.5. Logarithmic plot compared to the normal plot of the frequency response of

the low pass filter of Example 8.1, showing the ripple affect.

Decimation Filters

Sometimes we acquire signals with a far higher rate then our processing or storage can

manage. It would be wise to pass the data through a low-pass filter before throwing away

the unwanted, simply because there are higher frequency components that may produce

aliasing effect on the remaining data.

Decimation is the process of reducing the sampling rate and the Decimation factor

is the ratio of the input rate to the output rate. This ratio must be an integer since

we cannot throwaway part of the value. If there is a need for fractional reduction

then interpolation must be performed before decimating the data. For example, to

change the sample rate of a signal from 48 kHz to 44.1 kHz see Part 4:

Resampling.)

2.1.5 Which signals can be downsampled?

A signal can be downsampled (without doing any filtering) whenever it is

"oversampled", that is, when a sampling rate was used that was greater

than the Nyquist criteria required. Specifically, the signal's highest

frequency must be less than half the post-decimation sampling rate. (This

just boils down to applying the Nyquist criteria to the input signal, relative

to the new sampling rate.)

http://www.dspguru.com/info/faqs/multrate/resamp.htm
http://www.dspguru.com/info/faqs/multrate/resamp.htm

 12

In most cases, though, you'll end up lowpass-filtering your signal prior to

downsampling, in order to enforce the Nyquist criteria at the post-

decimation rate. For example, suppose you have a signal sampled at a rate

of 30 kHz, whose highest frequency component is 10 kHz (which is less

than the Nyquist frequency of 15 kHz). If you wish to reduce the sampling

rate by a factor of three to 10 kHz, you must ensure that you have no

components greater than 5 kHz, which is the Nyquist frequency for the

reduced rate. However, since the original signal has components up to 10

kHz, you must lowpass-filter the signal prior to downsampling to remove

all components above 5 kHz so that no aliasing will occur when

downsampling.

This combined operation of filtering and downsampling is called

decimation.

2.1.6 What happens if I violate the Nyquist criteria in downsampling or decimating?

You get aliasing--just as with other cases of violating the Nyquist criteria.

(Aliasing is a type of distortion which cannot be corrected once it occurs.)

2.2 Multistage

2.2.1 Can I decimate in multiple stages?

Yes, so long as the decimation factor, M, is not a prime number. For

example, to decimate by a factor of 15, you could decimate by 5, then

decimate by 3. The more prime factors M has, the more choices you have.

For example you could decimate by a factor of 24 using:

 one stage: 24

 two stages: 6 and 4, or 8 and 3

 three stages: 4, 3, and 2

 four stages: 3, 2, 2, and 2

2.2.2 Cool. But why bother with all that?

If you are simply downsampling (that is, throwing away samples without

filtering), there's no benefit. But in the more common case of decimating

(combining filtering and downsampling), the computational and memory

requirements of the filters can usually be reduced by using multiple stages.

2.2.3 OK, so how do I figure out the optimum number of stages, and the decimation

factor at each stage?

 13

That's a tough one. There isn't a simple answer to this one: the answer varies depending

on many things, so if you really want to find the optimum, you have to evaluate the

resource requirements of each possibility.

However, here are a couple of rules of thumb which may help narrow down the choices:

 Using two or three stages is usually optimal or near-optimal.

 Decimate in order from the largest to smallest factor. In other words, use the

largest factor at the highest sampling rate. For example, when decimating by a

factor of 60 in three stages, decimate by 5, then by 4, then by 3.

The multirate book references give additional, more specific guidance.

2.3 Implementation

2.3.1 How do I implement decimation?

Decimation consists of the processes of lowpass filtering, followed by

downsampling.

To implement the filtering part, you can use either FIR or IIR filters.

To implement the downsampling part (by a downsampling factor of "M")

simply keep every Mth sample, and throw away the M-1 samples in

between. For example, to decimate by 4, keep every fourth sample, and

throw three out of every four samples away.

2.3.2 That almost sounds too easy...

Beauty, eh? ;-)

2.3.3 If I'm going to throw away most of the lowpass filter's outputs, why bother to

calculate them in the first place?

You may be onto something. In the case of FIR filters, any output is a

function only of the past inputs (because there is no feedback). Therefore,

you only have to calculate outputs which will be used.

For IIR filters, you still have to do part or all of the filter calculation for

each input, even when the corresponding output won't be used.

(Depending on the filter topology used, certain feed-forward parts of the

calculation can be omitted.),. The reason is that outputs you do use are

affected by the feedback from the outputs you don't use.

http://www.dspguru.com/info/books/ref.htm

 14

The fact that only the outputs which will be used have to be calculated

explains why decimating filters are almost always implemented using FIR

filters!

2.4 FIR Decimators

2.4.1 What computational savings do I gain by using a FIR decimator?

Since you compute only one of every M outputs, you save M-1 operations

per output, or an overall "savings" of (M-1)/M. Therefore, the larger the

decimation factor is, the larger the savings, percentage-wise.

A simple way to think of the amount of computation required to

implement a FIR decimator is that it is equal to the computation required

for a non-decimating N-tap filter operating at the output rate.

2.4.2 How much memory savings do I gain by using a FIR decimator?

None. You still have to store every input sample in the FIR's delay line, so

the memory requirement is the same size as for a non-decimated FIR

having the same number of taps.

2.4.3 How do I design a FIR decimator?

Just use your favorite FIR design method. The design criteria are:

1. The passband lower frequency is zero; the passband upper

frequency is whatever information bandwidth you want to preserve

after decimating. The passband ripple is whatever your application

can tolerate.

2. The stopband lower frequency is half the output rate minus the

passband upper frequency. The stopband attenuation is set

according to whatever aliasing your application can stand. (Note

that there will always be aliasing in a decimator, but you just

reduce it to a negligible value with the decimating filter.)

3. As with any FIR, the number of taps is whatever is required to

meet the passband and stopband specifications.

2.4.4 How do I implement a FIR decimator?

A decimating FIR is actually the same as a regular FIR, except that you

shift M samples into the delay line for each output you calculate. More

specifically:

1. Store M samples in the delay line.

 15

2. Calculate the decimated output as the sum-of-products of the delay

line values and the filter coefficients.

3. Shift the delay line by M places to make room for the inputs of the

next decimation.

Also, just as with ordinary FIRs, circular buffers can be used to eliminate

the requirement to literally shift the data in the delay line.

2.4.5 Where can I get source code to implement a FIR decimator in C?

Right here. Our "multirate_algs" package includes a decimation routine.

You can download it from dspGuru's DSP Algorithm Library.

2.4.6 Where can I get assembly code to implement a FIR decimator?

The major DSP vendors provide examples of FIR decimators in their data

books and application notes; check their web sites.

2.4.7 How do I test a FIR decimator?

You can test a decimating FIR in most of the ways you might test an

ordinary FIR:

1. A special case of a decimator is an "ordinary" FIR. When given a

value of "1" for M, a decimator should act exactly like an ordinary

FIR. You can then do impulse, step, and sine tests on it just like

you can on an ordinary FIR.

2. If you put in a sine whose frequency is within the decimator's

passband, the output should be distortion-free (once the filter

reaches steady-state), and the frequency of the output should be the

same as the frequency of the input, in terms of absolute Hz.

3. You also can extend the "impulse response" test used for ordinary

FIRs by using a "fat impulse", consisting of M consecutive "1"

samples followed by a series of "0" samples. In that case, if the

decimator has been implemented correctly, the output will not be

the literal FIR filter coefficients, but will be the sum of every

subset of M coefficients.

4. You can use a step response test. Given a unity-valued step input,

the output should be the sum of the FIR coefficients once the filter

has reached steady state.

High-pass filters

http://www.dspguru.com/sw/opendsp/alglib2.htm

 16

The high-pass filter frequency response is as shown in the Figure 8.1.b. The only non-

zero values are from to 1 and from 1 to ; this is as if the low-pass filter is

subtracted from 1.

)(1)(LPHP HH 8.10

The corresponding impulse response is,

)()()(nhnnh lphp

Where 1)(n when n=0 and 0 otherwise.

Substituting the value of h(n) from the derivative of Equation 8.10 we get high pass filter

coefficients,

1

11)sin(
1)(

n

n
nhhp

 for 0n

1

11)sin(
)(

n

n
nhhp

 for 0n

The following is an example of high pass filter design.

Example 8.2. Design a high pass filter with the cutoff frequency of 3/5
th

 of the Nyquist

frequency.

Computed values of 21 coefficients for a high cutoff frequency of 6.0 (3.01) are

shown in the Table 8.2 for 10n to 10n .

Table 8.2.The filter coefficients for the high pass filter with the cutoff frequency of 6.0 .

h(-10)=h(10) 0

h(-9)=h(9) .0336367

h(-8)=h(8) -.0233872

h(-7)=h(7) -.0267283

h(-6)=h(6) .0504551

h(-5)=h(5) 0

h(-4)=h(4) -.0756827

h(-3)=h(3) .0623660

h(-2)=h(2) .0935489

h(-1)=h(1) -.3027307

h(0) .4

 17

The convolution equation of the high pass filter coefficients with the input samples is

presented in Equation 8.11.

20

0

][][
n

HP nkxhky 8.11

The frequency response is as shown in the Figure 8.6.

**** Insert Figure 8.6 here ****

Figure 8.6. Magnitude response of the 21-tap high pass filter (cutoff frequency

5

3
) compared to the ideal filter.

Band-pass Filters

The ideal Band-pass filter frequency response is shown in the Figure 8.1.c. The band pass

center frequency is 0 and C 01 , C 02 . The cutoff frequency

C refers to the low pass filter of Figure 8.1.a. The corresponding impulse response is

obtained from the appropriate integration of Equation 8.4,

 18

))(
1

())(
1

()(
2

2

2

1
1221

deHdeHnh njnj

2

22

1

11)sin()sin(
)(

n

n

n

n
nhBP

 8.12

The following example demonstrates the design of a band pass filter using filter

coefficients of Equation 8.12.

Example 8.3. Design a Band pass filter with the low cutoff frequency 2/5
th

 of the

sampling frequency and the high cutoff frequency 3/5
th

 of the sampling frequency.

For the band pass filter of (4.01) and the high cutoff frequency of (6.02) are

shown in the Table 8.3 for 10n to 10n . (See Appendix B for the Scilab listing to

generate the coefficients).

Table 8.3. The filter coefficients for a band pass filter for 10n to 10n .

h(-10)=h(10) -.0318310

h(-9)=h(9) -.0250088

h(-8)=h(8) 0

h(-7)=h(7) .0321542

h(-6)=h(6) .0530516

h(-5)=h(5) .0450158

h(-4)=h(4) 0

h(-3)=h(3) -.0750264

h(-2)=h(2) -.1591549

h(-1)=h(1) -.2250791

h(0) -.2

And the filter output is,

20

0

][][
n

BP nkxhky 8.13

The frequency response of the Equation 8.12 is as shown in the Figure 8.7.

 19

**** Insert Figure 8.7 here ****

Figure 8.7. Magnitude response of the 21-tap band pass filter of Example 8.3

Band-stop Filters

We can obtain an expression for a band-stop filter, similar to band-pass filter by the

appropriate integration of Equation 8.4,

))(
1

())(
1

()(
2

2

2

1
1221

deHdeHnh njnj

2

22

1

11)sin()sin(
)(

n

n

n

n
nhBS

 8.14

Example 8.4. Design a Band stop filter with the low cutoff frequency 2/5
th

 of the

sampling frequency and the high cutoff frequency 4/5
th

 of the sampling frequency.

 20

For the band pass filter of (4.01) and the high cutoff frequency of (8.02) are

shown in the Table 8.3 for 10n to 10n . Please see Appendix B for the Scilab

listing to generate the coefficients.

Table 8.4. The filter coefficients for a band pass filter for 10n to 10n .

h(-10)=h(10) 0

h(-9)=h(9) -.0128481

h(-8)=h(8) -.0612286

h(-7)=h(7) .0699755

h(-6)=h(6) .0192721

h(-5)=h(5) 0

h(-4)=h(4) -.0289082

h(-3)=h(3) -.1632762

h(-2)=h(2) .2449143

h(-1)=h(1) .1156328

h(0) -.4

A plot of the filter Transfer Function of the Equation 8.14 is shown in the Figure 8.8.

**** Insert Figure 8.8 here ****

 21

Figure 8.8. Magnitude response of the 21-tap band stop filter (low cutoff frequency

5

2
), (high cutoff frequency

5

4
), compared to the ideal filter

The FIR filters derived from the ideal response always produce ripples in the pass band

region. These ripples are the result of truncating the infinite coefficients Fourier series

while ignoring sinusoids in the process of summation. Increasing the number of filter

coefficients improves the ripples somewhat (see Figure 8.9 for a comparison of 11, 21

and coefficients Transfer Function). These ripples are unavoidable, but there are ways to

improve the design and that is topic of discussion of our next section.

***** Insert Figure 8.9 here *****

Figre 8.9. The logarithmic response of 11-tap, 21-tap and 31-tap Rectangular Window

Windowing

Frequency domain multiplication is akin to time domain convolution; similarly, time

domain multiplication is the same as frequency domain convolution. Performing Fourier

Transform on a set of data is like having a window to a different domain. From the

window of convolution, we see frequencies and through frequency domain

 22

multiplication, we see time series. We see one through the other. Imagine (when

performing the infinite summation) as if you are looking through a convolving window,

and you see all the frequencies that are present in the impulse response. But a truncated

series would miss out some frequencies and that shows as ripples in the Transfer

Function. It has the same effect as multiplying an infinite impulse response with a

rectangular window of 1’s and 0’s. In our example filters of 21 coefficients, we were

forced to truncate the infinite number of coefficients into a fixed number of 21 values.

We were by default using a rectangular window of twenty-one 1’s and rest 0’s as shown

in the Figure 8.10.

 0,0,0,..0,0,0,1,1,1…1,1,1,0,0,0..0,0,0

The Fourier series equivalent of the ideal frequency response of Figure 8.1b is given as,

k

k

jk

k ecg)(

The coefficients kc represent the amplitudes of the impulse response. But for practical

consideration, the infinite summation must be truncated to a finite value,

Nk

Nk

jk

k ecg)(

The affect of multiplying the kc values with a series of (2N+1) non-zero terms can be

described graphically, as shown in the Figure 8.11. The number of sample points (2N+1)

merely indicates a symmetric window with N number of sample points on each side of

the center.

***** Insert Figure 8.10 here *****

Figure 8.10. Discrete time rectangular window of 21 points

 23

The window determines how much of the impulse response can be seen. Looking from

the multiplication window, an infinite length impulse response h(n) (essentially, an

inverse Fourier Transform of an ideal frequency response) when multiplied with a

rectangular window w(n) produces a truncated impulse response t(n). This is a time

domain multiplication, but the effect is same as frequency domain convolution and that is

what we obtained when we realized the Transfer Function through a truncated series of

impulse response, see the Figure 8.11. The result of chopping of the ends of the infinite

series shows up as ripples in the Transfer Function near the Transition band as well as

side lobes in the stop band.

***** Insert Figure 8.11 here *****

Figure 8.11. Time domain multiplication of the Rectangular Window with the infinite

impulse response of the ideal infinite Rectangular Window

Ideally, if the rectangular convolving window were as large as the frequency response

window, there wouldn’t be any distortion of the resulting Transfer Function. Looking

from another angle, the process of obtaining the actual impulse response)(AH is as if

we have done a frequency domain convolution of a rectangular convolving window

)(W with an ideal frequency response)(IH .

X

=

 24

)(*)()(WHH IA

Besides rectangular window, other functions produce coefficients that when multiplied

by the impulse response of the ideal filters improve the filter performance, as shown in

the next section.

The Rectangular Window

We characterize a rectangular window as a series of (2N+1) non-zero terms. The values

are either 1 (inside the window) or 0 (outside the window). It is convenient to have a

window symmetric on 0, thus we have N sample points on each side. We can always shift

the window so that it begins with 0 to make it a causal window.

 0,0,0,..0,0,0,1,1,1…1,1,1,0,0,0..0,0,0

For 2N+1 number of 1s, the window becomes,

0

1
ka

Nk

Nk

 8.16

The Fourier Transform of the rectangular window of Equation 8.16 is,

 jNNjNjjN
Nk

Nk

jk

R eeeeeW)1()1()(8.17

The Equation 8.17 is a polynomial evaluated on a unit circle whose coefficients are 1 and

the Figure 8.5 is its frequency response plot where N=10. The Scilab instructions for

evaluating the Transfer Function magnitude of Equation 8.17 are provided in Appendix B

Chapter 8 fig8_12.

The Figure 8.12 is the magnitude of Equation 8.17 plotted for different values of N.

Notice, the reduction in transition width as we increase the number of coefficients. But

the side lobe amplitude remains same. The side lobe amplitude is specific to a window

function and is independent of the number of coefficients in the window. For rectangular

window the first side lobe amplitude is around 13 dB, which is about 1/5
th

 of its pass

 25

band magnitude. In most situations it is probably not an acceptable value, but compare to

other windows the rectangular window offers a steeper transition width.

***** Insert Figure 8.12 here *****

Figure 8.12. The plot showing the magnitude response of the Rectangular Window for

different number of filter coefficients

There is an approximate relationship between the transition widths and the number of

coefficients, and for a rectangular window, it is 9.1)12(fN . Two aspects are

important when specifying a filter,

1) The transition width.

2) The side lobe amplitude.

The number of coefficients affects the transition width, but the side lobe amplitude is

fixed for a window type.

 26

Example 8.5:

Suppose a low pass filter is specified as,

 2.1)(8.0 jeH 18.00

2.0)(jeH 22.0

The requirements of magnitude drop of 0.2 is within the reach of the rectangular window,

and we can compute the number of coefficients for the transition width of 0.04 as,

9.104.0)12(N

23N

The magnitude summation of the Equation 8.17 can also be expressed as,

22

)
2

1()
2

1(

)(
jj

NjNj

R

ee

ee
W

)2sin(

)21sin(
)(

N
WR 8.18

If we were to normalize the window function to a unit area (meaning the sum of the

coefficients to be equal to 1) then each coefficient is an equal weight of
12

1

N
 and the

Equation 8.18 becomes

0

12

1

nak
Nk

Nk

 8.19

And the corresponding impulse response of Equation 8.19 becomes,

)2sin()121(

)21sin(
)(

N

N
WR

 27

All the filters being discussed in the previous section were designed using the rectangular

window, as the coefficients were generated with the values from the ideal rectangular

transfer function. Next, we discuss other window functions that have better suppression

in the stop band region compare to the rectangular window.

Power Window

Shaping the rectangular window with a power function multiplier can make a simple

design improvement. In fact, any function whose values tapers off towards the end can

serve the purpose of a window shaper and provide a performance improvement. A

function that puts increasingly extra weight towards the end is,

.

0

)(1(2

N
k

ak
Nk

Nk

 8.20

The maximum weight of the power function of Equation 8.20 is 1 when k=0 and for k=N

the power function tapers off to 0 values.

0)10(

19.)9(

36.)8(

51.)7(

64.)6(

75.)5(

84.)4(

91.)3(

96.)2(

99.)1(

1)0(

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

W

W

W

W

W

W

W

W

W

W

W

0)20(

19.)19(

36.)18(

51.)17(

64.)16(

75.)15(

84.)14(

91.)13(

96.)12(

99.)11(

1)0(

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

W

W

W

W

W

W

W

W

W

W

W

2

1

1

1
2

))(1(
1))(1(

2

1
)(

2

2

 jn

eN
n

de
N

nnh
jn

jn

 28

 n

n
N

n

j

ee

n

N
n

nh
jnjn)sin())(1(

)
2

(
))(1(

)(
1

22

1

1

2

1)sin())(1(
)(

n

nN
n

nh

 8.21

The Table 8.5 shows the calculated values of 21 coefficients of the power window.

Table 8.5. Coefficients for a 21-tap low pass filter (cutoff frequency 4.0C).

h(-10)=h(20) 0

h(-9)=h(19) -.0063910

h(-8)=h(18) -.0084194

h(-7)=h(17) .0136314

h(-6)=h(16) .0322913

h(-5)=h(15) 0

h(-4)=h(14) -.0635734

h(-3)=h(13) -.0567530

h(-2)=h(12) .0898070

h(-1)=h(11) .2997034

h(0) .4

The Figure 8.13 is the magnitude of Equation 8.21 plotted for different values of N and

the Scilab instructions for evaluating the Transfer Function magnitude are provided in

Appendix B Chapter 8 fig8_13. There is some improvement in the side-lobe amplitude as

it dropped down to nearly 21 dB but the transition width goes up from 1.9 to 2.8 for the

same number of coefficients. It only indicates that in order to meet the requirement of

steeper roll-off of frequency response we must increase the number of coefficients.

 29

***** Insert Figure 8.13 here *****

Figure 8.13. The plot showing the magnitude response of the Power Window for different

number of filter coefficients

The following example illustrates the difference between rectangular window and the

power window for the number of coefficients required for the same transition width as in

rectangular window.

Example 8.5:

Suppose a low pass filter is specified as,

 1.1)(1.0 jeH 18.00

1.0)(jeH 22.0

The requirements of magnitude drop of 0.1 is within the reach of the power window, and

to achieve the transition width of 0.04, we get,

 30

8.204.0)12(N

35N

The Figure 8.14 is the plot of the filter response of Example 8.1 using Hamming Window

coefficients (together with rectangular window for comparison). There is a 3% overshoot

near the transition band but the filter has a steeper response compare to other window

functions, see the Figure 8.21.

***** Insert Figure 8.14 here *****

Figure 8.14. Figure showing reduction in the side lobe amplitude with the Power Window

compared to the Rectangular Window.

 31

Von Hann Window

A more severe weighting average that would put extra weight at the end is a cosine

function, given in Equation 8.22. This is the Von Hann window or the raised cosine

window,

0

2

cos1 Nk

ak

Nk

Nk

 8.22

The following table provides the values of Equation 8.22 for k=0 through 9, and being a

symmetric window the values for k = -1 to –9 are same as k=1 through 9.

08.0)10(

1025.)9(

172.)8(

2696.)7(

3978.)6(

54.)5(

678.)4(

81038122.)3(

91214782.)2(

977486.)1(

1)0(

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

W

W

W

W

W

W

W

W

W

W

W

 32

***** Insert Figure 8.15 here *****

Figure 8.15. Figure showing reduction in the side lobe amplitude with the Von Hann

Window compared to the Rectangular Window.

The magnitude of Equation 8.22 plotted for different values of N is presented in Figure

8.16. (The Scilab instructions are provided in Appendix B Chapter 8 fig8_16.) The side

lobe amplitude drops down to nearly 31 dB but compare to rectangular window the

transition width went up from 1.9 to 4.2.

 33

***** Insert Figure 8.16 here *****

Figure 8.16. The plot showing the magnitude response of the Von Hann window for

different number of filter coefficients

The filter specifications of the Example 8.5 are met with 52 coefficients for Von Window

compare to 23 coefficients of the rectangular window, but on the bright side, we do get a

suppression of 31dB in the stop band region.

2.404.0)12(N

52N

Hamming Window

The Hamming Window, also known as cosine window with platform is given as

 34

0

cos)54.01(54.0 Nk
ak

Nk

Nk

 8.23

The following table provides the values of Equation 8.23 for k=0 through 9,

0)10(

0244.)9(

095.)8(

206.)7(

3454.)6(

5.)5(

6545.)4(

7938.)3(

9045.)2(

9755.)1(

1)0(

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

PW

W

W

W

W

W

W

W

W

W

W

W

The Figure 8.17 shows the magnitude of the Equation 8.23 plotted for different values of

N with the help of Scilab program, (see Appendix B Chapter 8 fig8_17). The side lobe

amplitude drops down to nearly 41 dB but compare to rectangular window the transition

width goes up from 1.9 to 4.4.

 35

***** Insert Figure 8.17 here *****

Figure 8.17. The plot showing the magnitude response of the Hamming Window for

different number of filter coefficients

Compare to rectangular window a transition width of 0.4 requires,

8.104.0)12(N

55N

A plot of the filter response of example 1, modified by the Hamming window is

presented in the Figure 8.18 (Together with rectangular window for comparison.) There

is a 0.03% overshoot near the transition band and the side lobe suppression is more

aggressive, but there is an increase in the width of the roll off of transition band. (See the

Figure 8.21 for comparison.)

 36

***** Insert Figure 8.18 here *****

Figure 8.18. Figure showing reduction in the side lobe amplitude with the Hamming

window compared to the rectangular window.

Kaiser Window

The Kaiser window’s weighting function has a flexible design option. You can specify a

range of allowable ripples in the side lobes, (those were fixed in the other window

options). The function is given as,

0

)(

)(1

0

2

0

I

NnI

ak
Nk

Nk

 8.23

2

1

0
!

)2(
1

M

m

m

m

x
I

 37

The parameter 0I is the modified Bessel function of the first kind and zero order. The

Equation 8.23 approximates the Bessel Function where summation limit M is an arbitrary

limit. We can stop computing the Bessel terms when the value becomes less then a

prescribed low limit. The Scilab program for computing Kaiser Window coefficients

using Equation 8.23 is presented in Appendix B Chapter 8, (see function Kaiser_coeff()).

The value specifies its frequency response in terms of the main lobe width and the side

lobe level. Large value of corresponds to a wider main lobe with smaller side lobe

levels. The normal range of is 94 . The parameter M is chosen such that the

last term in series is less than 8101 . The following table was computed using the value

 2 . (See Appendix B chapter 8 fig8_21.

0)10(

0361.)9(

1296.)8(

2601.)7(

4096.)6(

5625.)5(

7056.)4(

8281.)3(

9216.)2(

9801.)1(

1)0(

KR

KR

KR

KR

KR

KR

KR

KR

KR

KR

KR

W

W

W

W

W

W

W

W

W

W

W

 38

R.W Hamming has summarized the empirical relationship between the parameter and

the stop band ripples in dB as follows,

0

)21(07886.0_)21(5842.0

)7.8(1102.0

4.0

21

5021

50

And the relationship between the transition width and the number of coefficients for is

given as,

f
N

36.14

95.7
)12(

For a stop band ripple of 0.01 and transition width of 0.01f we could calculate the number

of coefficients as,

40)01.0log(20

223
01.036.14

95.740
)12(

N

The Figure 8.19is the magnitude of Equation 8.23 plotted for different values of N. The

relationship between the number of coefficients and the transition width for the 2 is

given as, 44.0)12(fN .

 39

***** Insert Figure 8.19here *****

Figure 8.19.The plot showing the magnitude response of the rectangular window for

different number of filter coefficients

The Figure 8.20 is a plot f filter response of the Kaiser Window function of Equation 8.23

compare to the rectangular window.

 40

***** Insert Figure 8.20ere *****

Figure 8.20. Figure showing reduction in the side lobe amplitude with the Kaiser window

compared to the rectangular window.

A comparison of window functions shows that applying window function is a better

alternate than increasing the coefficients of a rectangular window. The Figure 8.21 is a

Bode plot of the response of the four Window functions as mentioned in the previous

section.

 41

***** Insert Figure 8.21 here *****

Figure 8.21. The comparison of the side lobe amplitudes of the Power Window, Von

Hann Window, Hamming Window and the Kaiser Window

Conclusion

We have studied the Fourier Transform method of designing filters, commonly known as

Finite Impulse Response (FIR) filters. The method provides filters that do not depend

upon values from past, and the impulse response has a finite duration, thus, providing a

linear phase response compare to the infinite impulse response method where the initial

transients stay on for a long time.

