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Introduction

So far we have studied Fourier analysis as a way to observe an event and analyze its
constituent frequencies. Now we consider the processing of a signal, meaning,
integrating, differentiating, smoothing and filtering of input signals to produce a desired
outcome. You will soon realize that many of the processing in a digital signal processing
meant implementing solutions of differential equations, whether it is a temperature
control system or speech analysis or vibration studies. The cause and effect has
relationship that lends itself to the formulation of differential equations. We encounter
them when we design analog electrical circuits and mechanical systems and since the
digital signal processing has its roots in the analog signal processing, it is imperative to
understand the methodology of deriving the algorithms to solve differential equations.

In this chapter we will devote our attention to the Convolution process, as the method of
solving a differential equation, while the other technique of Laplace Transfer will be
differed till the next chapter. If the goal is to design a simple integrator or a differentiator
then we only need to derive a difference equation to be implemented as an iterative
algorithm in a digital computer, but implementing a digital or analog filter requires
deriving a closed form expression called Transfer Function. A transfer function defines
the output of a system, as a function of frequency, indicating what frequencies will be
suppressed while others are available without degradation. We begin our study with a
refresher and establish the necessary mathematical foundation.

Linear Time Invariant System

A system is considered linear if its output is directly proportional to its input, such as
current and voltage relationship in an electrical system (an example of a non linear
system is a relationship between current and power). The time invariance condition
describes a system in which a delay in the input causes same amount of delay in the
output. The solutions that are presented in this chapter require the system to be Linear
and Time Invariant.

A Linear System has the Additive property and a Homogeneity property. An additive
system is where the response to a sum of inputs is the same as the sum of the individual
responses and a system is homogenous when the scaling of the input by some amount
also results in the scaling of the output by the same amount (a sinusoidal input remains a
sinusoidal output without affecting the frequency of the input signal, only the magnitude
and phase may change). It should be noted that we will be dealing with only Linear
Systems and the differential equations would be linear differential equations.

A system will exhibit a certain response, depending upon the input energy applied to the
system. If the response is due to the stored energy such as a charge on a capacitor or



current in the inductor, then it is the natural response of the system. But if the response
is due to some external energy source then it is the forced response of the system.

The condition of a system being Linear is not very strict. All we are asking is that, if the
forced response of the system is being studied there must not be any prior force present in
the system and if the natural response of the system is under study the input force must
have been removed after giving the initial push. The other additive and homogeneity
property requires that the quantity under study must have a simple one to one relationship
between the input and output of the system. A system exhibits additive property if the
output of several individual inputs is the same as output of each independent input
summed together. For example, if the response of the input 2sin(3¢) is sin(3¢ + ¢, ) and

1.5sin(4¢) is sin(4f + ¢, ) then in a linear system the response of 2sin(3¢) +1.5sin(4¢)
would be sin(3¢ + ¢, ) +sin(4z + ¢,) as shown in Figure 4.1.
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**%* Insert Figure 4.1 here ****
Figure 4.1 Showing additive property of a linear system, the combined output is the same
as individual output summed together.

In other words if the input is decomposed into several distinct excitations and the output
is a superimposed result of each individual excitation, the system is additive in nature.
The Time Invariant condition refers to the fact that if the input excitation is delay by ¢
amount of time then the output will also be delayed by the same amount of time.

Differential Equations

A differential equation is formed when the function and the rate of change of the function
(or the derivative) appears together in the same algebraic equation. The order of a
differential equation is defined as the highest order of the derivative contained in it. A
first order differential equation is formed in an electrical network if there is only one
energy storage element in the circuit, such as a capacitor or an inductor. The current

across the capacitor is proportional to the rate of change of the voltage applied, i = C? .
t

Similarly, the voltage across an inductor is proportional to the rate of change of the



: di : :
current applied, v = LZ . (Resistors are not considered energy storage elements.) A
4

second order differential equation is formed when there are two different energy
storage elements in a circuit, such as a capacitor and inductor in series or parallel,

resulting in a second derivative in the system. The current across a parallel combination
2

) . o dv 1 ) .
of a capacitor and an inductor is i =C 7 + Zv , while voltage across a series
t
L . : , d’i 1.
combination of a capacitor and an inductor is v =L o + El .
t

Systems Response

A system, which is capable of storing energy such as an electrical circuit or mechanical
system responses to a stimulus in two different ways, natural response and a forced
response. The behavior determined by the internal energy storage elements is the natural
response and the behavior determined by an external force is the forced response. Think
about the energy stored when a spring is stretched. The spring may be forced to vibrate at
any frequency by applying an external alternating force, but if the spring is stretched and
released it will vibrate at its characteristic frequency determined by the specific spring
constant. The natural response is the response due to the stored energy being released at
natural pace. A system will always exhibit its natural response once the input excitation is
removed from the system. Even if we don’t remove it, as in case of obtaining a forced
response, we can think about the input as a series of impulses applied and derive a
solution as if several natural responses occurring sequentially. This is the basis for
Convolution and will be discussed later in the chapter. It is easier from analysis point of
view that we study the two responses independently and combine the result at our
convenience at a later time. The system is guarantied not to alter the behavior since we
are studying linear systems only.

Solutions of differential equations

Finding a response to an input excitation requires one to provide a homogenous solution
as well as a particular solution. The homogenous solution is for the homogenous
differential equation of the system formed as a result of applying the basic laws of
physics on the circuit components of the system and it is devoid of an external force. It is
also the natural response of the system as it is the result of solving equation when the
input force is no longer in action. It is like seeing the residual effect due to the energy
stored in the system. A particular solution of a differential equation is any function that
satisfies the given differential equation. We will see that the particular solution is
essentially the forced response of the system and the homogenous solution is the natural
response of the system.



Linear Differential Equations

A linear differential equation is formed in a linear time invariant system as a result of
meeting certain initial condition criteria. For the forced response of the system there must
not be any force before the time ¢ < 0 and for the natural response, the input force must
be gone after time ¢ > 0. These are the initial condition requirements for a differential
equation to be linear. The initial condition for the natural response is also called zero
input condition and for the forced response is the zero state condition. The forced
response of a system that already has an input force at # < 0 creates a non-linear
differential equation and it is not of interest to us from Digital Signal Processing point of
view.

The homogenous solution and the particular solution can be derived separately for a
linear system and the final result may be obtained by a simple addition of the two
solutions.

We can solve differential equations using Convolution method or the Laplace Transform
method. Both are equally important in their own respect and have usefulness in different
applications. Convolution is the primarily tool in image processing while Laplace
Transform is being used mainly in signal processing such as speech and controls systems.

The Laplace transform essentially converts a time domain signal into frequency domain
and produces a response that is best suited for frequency analysis. Analog filters are
implemented for accepting a desired frequency range as well as rejecting an unwanted
frequency band from input signals. They are also being used during speech compression
and transmission as they can be designed to produce a desired waveform. The Laplace
transform is ideal for such Filter designs. Convolution on the other hand is a time domain
process and is being mainly used in operations such as smoothing and filtering of input
data.

The challenge in digital signal processing is to find a discrete time solution of a
differential equation that has a counterpart continuous time solution. The theory of
Laplace Transform is the basis for frequency domain analysis and through that the z
Transform is being derived, which forms the basis for a discrete sample solution.
Similarly, Convolution is the technique for solving time domain continuous time
differential equations and there is a companion discrete time solution, suitable for
software algorithms of Digital Signal Processing.

Filters, whether analog or digital are implemented as close form expressions of
differential equation solutions.

The general form of a differential equation

An nth order differential equation is defined as
dy d’y
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Where x(t) and y(z) represent the input and output respectively and a, are the constant
coefficients describing the characteristics of the system elements. If the input excitation is
removed i.e. x(?) = 0 then the resulting equation is called homogenous differential
equation and requires only a general solution, otherwise, it is an inhomogeneous equation
and requires a particular solution. It should be noted that a complete solution is a general
solution plus a particular solution.

In the scope of digital signal processing, only the solutions of the first and the second
order linear differential equation are considered. Other higher forms can be represented
as cascaded or parallel combinations of simple first and second order equations. A
solution of exponent form will always satisfy any order linear differential equation.

First order differential equations

The general form of differential equation with one energy storage element is given as,

D _
ay+a =/ 4.1

Where y is the output and x is the input to the system.

Natural response

Removing the input source at time t =0 the input x becomes zero at ¢ > 0 and the
differential equation becomes,

a0y+a]%=0

We will assume a solution of exponent form,

y — Aekt
@ _ kAe"
dt
Selecting a value of k = ~ 9 satisfies the Equation 4.1
a

The coefficient 4 can be solved using the initial condition of the system and for that let’s
work through an example. The capacitor C=1uF in the Figure 4.2 was initially charged
with voltage V). At time =0 the switch was then thrown in the position of the resistor
R=1k, essentially removing the power source from the system. For the circuit component
as given, we will determine the voltage as a function of time after the capacitor is
connected with the resistor and also find the discrete time solution of the network for the
sampling rate of 10 samples per second.
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**** Inser Figure 4.2a here ****
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**** Inser Figure 4.2b here **#*
Figure 4.2. Circuit showing an RC network. a) The capacitor is connected to the power
source. b). The power is switched offat > 0.

Assuming at t=0 the switch was thrown towards the resistor. Applying the Kirchoff’s
voltage law on the RC network we get a first order differential equation as a result of
equating the voltages,

Ve (1) = v (0)
Using Kirchoff’s current law of summing the current at a node, we get,

i)+, (1) =0
The voltage and current across the resistor is,

. . v
v, = Ri, iy = XR
The voltage and current across the capacitor is,
1 dv
v () =V, +— [idt i =C=C
C dt
We get a homogenous equation by summing the two current
cBve Ve
dt R

=0



dv,

RC—=+v.=0
dt
Assuming v¢ as an exponential function of time,
dv
v, = Ade" —C< = k4e"
dt

Substituting the expressions into the homogenous solution
RCkAe" + Ae* =0
(RCk+1)4e" =0
__1
RC
_t
v, =Ae Ve (4.2)
The Equation 4.2 is the homogenous solution of a first order differential equation. To find
the value of 4 we apply the initial condition of the voltage v=V at t=0.
Ae’ =V, A=V,
Substituting the value of 4 and & in the expression we obtained the relationship of the
voltage as a function of time as the solution of homogenous differential equation,
vy (6) = Vye /e 4.3)
The particular solution is for the response due to the input force applied after the time t=0
and for our example we have 0 input force thus,
v,=0 (4.4)
The complete solution is obtained by adding homogenous solution (Equation 4.3) and the
particular solution (Equation 4.4),

_t
v, =V,e Ve

Figure 4.3 is the plot of the voltage as a function of time for an initial voltage of 1V, R =
1k and C=1uF.



***+*Insert Figure 4.3 here ****

Figure 4.3. The plot of the voltage as a function of time for the circuit of Figure 4.2b.

Forced Response

The natural response of a circuit will remain same regardless of the input applied, but the
response to an external source depends entirely on the input type. Although the study of a
response to an arbitrary input is our goal but we would derive the solution through the
study of step response and the impulse response. An impulse is considered a special
case of the step (with a very short duration) and an arbitrary input could be considered as
an input of series of impulses very close to each other, albeit scaled by some magnitude
and delayed by some time. If we know the response to a unit impulse, we can always find
the response to an arbitrary input by considering the input as a series of impulses.
Computing the cumulative affect of the previous responses and adding them to the output
of the new response we can find the complete response. The process is known as
Convolution and is simply a multiplication and addition operation; the multiplication is
for scaling the input to the unit impulse and addition for taking into account the previous
output. The frequency response is of special interest, as it would help us design circuits
that act as frequency filters.

Step Response

Applying a constant current / at the instance t = 0 is synonym to a step input. The switch
in the Figure 4.4 when thrown in the position of the capacitor will let the current flow
into the RC circuit. We can imagine the response conceptually that the charge on the
capacitor will slowly build up until it reaches the level of the voltage that appears on the
Resistor R as well. Mathematically we can calculate the time it takes for the capacitor to

reach the final voltage (v=RI) and that would be the final response of the system for a
step input.



Applying the Kirchoff’s Current Law on the circuit,
C ﬂ + l v=1
dt R
Where / indicate the constant current through the RC system.

The homogenous solution remains the same as described in the Equation 4.2
_t
v, = Ae Vre
The particular solution is obtained by the new input condition of the constant current and

we get the following particular solution
v, =1IR

You can verify the answer by placing the derivative % =0 into the general differential
t

equation. The complete solution is obtained by adding the homogenous solution and the
particular solution,
v=v, +V,

_t
v=Ae Vi + IR 4.5)
The coefficient 4 is obtained from the initial condition
v(0)=0
Ae’ +IR=0 A=-IR
Substituting the value of 4 into Equation 4.5 we obtain the voltage as a function of time,
v = IR(1—¢ /%) (4.6)

The Figure 4.4b is the plot of the Equation 4.6 showing the exponential rise of the voltage
until it reaches the near full value of v=RI. The time constant 7 for an RC circuit is
defined as the time it takes for the voltage to rise up to 0.63 of its full value and after the
4T the voltage reaches 99.98% of the full value.

DC ) . C -R

**** Insert Figure 4.4a here ****
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**%*% Insert Figure 4.4b here ****

Figure 4.4a.RC network for the Equation 4.6. b) The step response of the first order
differential equation solution of the Equation 4.6 for /=1 and R=1.

Discrete time solution

The discrete time sampling meant taking inputs regularly at a predetermined interval. The
term is implied in Digital Signal Processing as it takes a finite amount of time for a
processor to acquire and process the data before the next sample is being obtained. If the

sampling rate of the input signal is yA / samples per second, then the equivalent

continuous time ¢ for the kth sample is kAt . To derive a discrete time solution of
Equation 4.1 we use the method of backward differences,

Vi = Via
RC——"—+y =x
Al Vi k

Where x; is the current input, yy is the current output and y. ;) is the previous output and
the differential equation is simply a difference equation. Solving for y; we have,

At
Y= L Yia t —AC
LA - At
A pe ™ 1+ e
If the Atis sufficiently small the term (1+ A%{ C)"1 may be approximated as,

At a1 At
A+ 8%p0) " = 1=k c
Using a new term for a, = A%{C and b, =1- A%QC , we get,

X

Vi = aoX, by, 4.7)
Using the input voltage x=1V, RC =1 and sampling period Az = 0.1, we get,

11



v, =0.1x+0.9y,_,

The general solution described in the Equation 4.7 is suitable for an iterative software
algorithm for a digital computer implementation. Figure 4.5 shows the comparison
between the discrete time solution and the continuous time solution of Equation 4.1 and
Equation 4.7.
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**** Inser Figure 4.5 here ****
Figure 4.5. Comparison of the discrete time solution and the continuous time
solution for the circuit of Figure 4.2.

Unit Impulse Response
By definition, a unit impulse is a short duration pulse with a total area equal to one. The
Figure 4.6 depicts such a function with a width of ¢ and a height of é and is denoted by

the symbol 6(¢). It may not be possible to produce such a function in practice but

conceptually it would helps us formulate the response of a continuous function, for we
can think of a continuous function of time as a series of impulses.

12
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Figure 4.6. An impulse function of width 6 and a height of %

In order to find a solution of the homogenous equation for a unit impulse input, we need
to find the amount of energy stored in the energy storage elements of the circuit, (such as
capacitors and inductors) due to the impulse applied. Consider the charge build up in a
capacitor due to the current function whose area equals one,

jidr:CV:l

yoL
C

Similarly, the current stored in an inductor due to voltage spike function whose area
equals one,
[vat=rv =1
1

V==
L

Suffice to say that the initial condition produced by an impulse current on a capacitor is a
voltage V, = % and the current stored in an inductor is /, = % .

The requirement is to solve the solution of the following differential equation,

The particular solution is given as
Vp =0 at t=0
For all practical purpose the function 6 = 0 at time ¢ > 0 making the particular solution
vp =0 at >0
Using the above-mentioned initial conditions we can obtain the complete response by
adding the homogenous and the particular solution just like we did with the step input
solution.

V=V, +V,
_t
v=Ae 4C+5 att=0 (4.8)

The coefficient 4 is obtained from the initial condition

13



vW(0)=V, = V.

— 40 -1 =1/ _
v=Ae +0 = /C A= /C o
Substituting the value of 4 into Equation 4.8 we obtain the voltage as a function of time,

ve(Vmd)e i vs at 1=0

Substituting o =0 at time 7 > 0, we get the complete solution (or the response) to an
impulse input in Equation 4.9.

v(t) = %e_%ec (4.9)

Notice the similarities between the natural response (see Equation 4.2) and the impulse
response of Equation 4.9. The comparison shows that the impulse response is essentially
the same as the natural response of the system. The impulse function is being used only
to visualize the amount of energy one can transfer in one go, without violating the initial
condition of the zero input response. It may not be physically possible to provide such a
force in reality, but it simplifies the mathematics. Once we determine the response of an
impulse function, it is easier to derive the response of an arbitrary input function and that
will be explained in the Convolution process later in the chapter. The Figure 4.7 is the
plot of the Equation 4.9 as At —> 0.

A

**%* Insert Figure 4.7 here ****
Figure 4.7. The impulse response of the first order differential equation as At — 0

Scaled Impulse Response

The impulse function doesn’t have to be a unit area function. If the height is being halved
the area will be halved and the output would be simply half of what a unit impulse
response is.

jidr: CV =05

14
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In other words if the input is scaled by a factor A the output would be
A I
v(t)=—e /R
(1) C

Arbitrary Input and Convolution

It is easier to obtain a solution for differential equations if the input is a well-defined
mathematical function such as a step, an impulse or a sinusoidal input. Simply find the
first and second derivative, plug-in the values and solve for the equations and get the
output response. But an arbitrary input has no well-defined shape and form; a data
acquisition system reading a channel value has no notion of the value being read. Events
happen without set mathematical values. Take temperature and pressure for example. In
order to design a control system for them, we must be able to predict the behavior of the
system for an arbitrary input signal. In other words find the response of the system to an
arbitrary input.

One way to analyze such an input is to look through the window of an impulse. If we
breakdown the input as if it is a series of scaled impulses the job gets easier, as shown in
Figure 4.8. We already know how to get the impulse response for an impulse function
(see the Equation 4.9 for an RC network). Now it is just a matter of finding the scaling
factors and getting the scaled responses. Then simply add the individual responses (of
course delayed by some time) and we have the desired outcome. This is Convolution.

012 N, N

**%* Insert Figure 4.8 here ****
Figure 4.8. Approximating an input as a series of impulses

The Convolution Process

The first step in Convolution is to isolate the impulse from the rest of the input and then
scale it. This would create a trail of unit impulse scaled by the input signals at specific
instance of time as shown in Figure 4.9. Without making it sound too complicated, if you
think about it, the whole process is akin to simply taking the instantaneous values of the
input signal at a specific interval of time. The value being acquired is the scaled unit
impulse value, but of course delayed by the sampling interval. In this scheme, each new

15



response will have contribution from the previous response that we must take into
consideration into the current output.

7 Scaled
~ impulse

Response

**%* Insert Figure 4.9 here ****
Figure 4.9. Input sliced into a series of impulse and the response

Discrete Time Convolution

Mathematically, we can express the operation of discrete time sampling as shown in the
Figure 4.9. A trail of areas delayed by the interval A¢. If fand i (¢) are the instantaneous

sample time and sample value and #, and 4(¢, ) are the n,, sample time and unit impulse
response then the ny, delayed response is i (¢, )h(t —¢,)At . The one before that is

i (¢, )h(t—t, _)At, all the way to the beginning i _(¢,)h(t —¢,)At. What we are doing is
going back in time and finding the response of the previous sample again but this time
using the next part of the impulse response. Every time you multiply the current input
with the current impulse response you must add it to it the previous sample value
multiplied by the delayed impulse response, see Figure 4.10 for a graphical description.
Convolution process is the mathematical operation of accumulating the current response
plus all the previous responses,

16



v(t,) =i (t,)h(t—t)At +i (t)h(t—t)At+...+i (¢, )h(t—t, )At

w(t,) = zlz (t,)h(t —t,)At (4.10)

Taking the limit as A# — 0 the summation in Equation 4.10 becomes an integral as
shown in Equation 4.11.

W(t) = jz (t,)h(t —t,)dt t>0 (4.11)

We can obtain the discrete time equivalent of the Equation 4.10 by substituting 7,
impulse response and ¢, A = k,, input sample as shown in Equation 4.12. Notice the sign

of the convolution operator x(n) *h(n), a multiplication followed by the addition.
x(n)* h(n) =Y x(k)h(n —k) 4.12)
k=0

One disadvantage with Equation 4.12 is that the multiplication process is done over the
entire array of input values, while in practice the impulse response is usually short and
most multiplications result in zeros. We can avoid this unnecessary multiplication by
using the commutative property of the convolution as shown later in the section.

The Equation 4.13 is the discrete time representation of a first order differential equation
Ve =apx, +by, (4.13)

We can obtain a solution of the above equation through convolution process if the

digitized version of the unit impulse response is provided. Assuming the discrete time

impulse response is a series 4(0), a(1)...a(n —1), h(n) and the input samples are

x(0), x(1)...x(n —1),x(n) then the convolution is simply a multiply and add operation as
shown in Equation 4.14.

(k) = Zh(i)x(k —0) (4.14)

Note: Although the impulse response may be infinite in length, but after a while the
response becomes negligible and for all practical purpose values beyond the &, sample is
treated as 0.

We can prove that Equation 4.14 is indeed a solution of Equation 4.13 (or Equation 4.1)
with the following analogy,

Assuming the input is a unit impulse

Lk=0
x(k)zé(k)z{o k #0

Substituting the unit impulse value x(k) into Equation 4.13 we get the following series,

17



Yo =hy =a,

yi=h =ayb
Yy =h, = aobl2
yn = hn = aOb]n

(4.15)
But for an arbitrary input signal x(k), we get

Yo = ayx(0)
yy = ayx(l) +a,b,x(0)
v, =a,x(2)+a,b,x(1) + aobfx(O)

(k) = ayx(k) + a,bx(k —1) +...a,b x(0)

(k) = D hGi)xtk =)

We can see that the coefficients of above equations match the impulse response of the
Equation 4.13, which is given by Equation 4.15.

Properties of Convolution
The convolution of two different sequences can be combined in different ways,

Commutative Property
The order in which two sequences are convolved is not important. The following
equality holds,

x(m)* h(n) = h(n)*x(n)

Associative Property
If two systems with responses /;(n) and /,(n) are connected in series, an equivalent
system is one that has a response equal to the convolution of /;(n) and h,(n).

X()*{ hi(n) + ha(n)y= x(m)* hi(n)y+ x(n)*ha(n);
Distributive Property

If two systems with responses /;(n) and /,(n) are connected in parallel, an equivalent
system is one that has a response equal to the sum of /;(n) and /(n).

18



X()*{ hi(n) + ha(n)}= {x()* hi(n)}+ {x(n)*ha(n)

Graphical representation of Convolution process

As descried in Equation 4.14 the Convolution is simply a multiply and add process, thus,
for any discrete time input sequence x(k) and the discrete impulse response sequence /(k)
of the system, the output sequence y(k) may be computed using Equation 4.16,

(k) = Zh(i)x(k —i) (4.16)

You may recognize that we only need to perform the multiplication process for the range
of numbers in which the impulse response /(n) has non zero values. Let’s take an
example of a system that has the following impulse response,

h(0)=3
h(1)=2
h(2)=1
h(3)=0

h(n)=0
And the input sequence as shown in Figure 4.10.

Notice, the impulse response has zero values beyond the range k£ > 2. Thus, the
convolution operation may be reduced as shown in Equation 4.17.

y(n) = Z h(k) x x(n - k) 4.17)

To illustrate the steps of discrete convolution, let’s say we have input sequence x(n) and
h(k) as shown in Figure 4.10. The out y(n) is computed as followings,

y(0)=3x3+2x0+1x0=9
Y1) =3x1+2x3+1x0=9

y(3)=3x3+2x2+1x1=14
y(4)=3x3+2x3+1x2=17
Y(5)=3x1+2x3+1x3=12
Y(6)=3x2+2x1+1x3=11
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**%* Insert Figure 4.10 here ****
Figure 4.10.The convolution of discrete time sampling, the arrows showing computation
of y(4)=3x3+2x3+1x2=17.

The Convolution operation forms the basis for the digital filtering technique that we will
discuss in chapter 6 and 7.

Second order differential equations

The simple exponential response of the first order differential equation was easy to
visualize, but the second order differential equations are more complex in their response;
simply, because there are two energy storage elements and their different possible
combinations produce varying responses. Before we proceed further with a full
mathematical development it would be helpful to create an intuitive feelings about the
behavior of such systems in which two energy storage elements are in a loop, such as an
inductor and a capacitor, one is capable of storing the current and the other is capable of
storing the voltage.

A system as shown in the circuit of Figure 4.11 will serve the purpose for this example.
We would like to see the inductive current as the response to the input voltage applied on
the capacitor. Let’s say the switch S1 on the capacitor C was originally connected to the
voltage supply, letting the capacitor store certain amount of charge. Once the capacitor
was fully saturated we throw the switch towards the inductor L, creating a loop between
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the inductor and the capacitor. The capacitor will start feeding the current to the inductor
and the inductor will start building-up the voltage across its terminals. The inductor will
gain the energy loss from the capacitor, but then the change of voltage across the inductor
will start feeding the charge back into the capacitor. The charge gain by the capacitor
back from the inductor will be seen by the inductor as a current source and it will start
building the voltage all over again, this back and forth yo-yo of energy loss and gain will
last forever as long as we have ideal components.

The rise and fall of the charge on the capacitor and the current on the inductor is a
sinusoidal function of time whose amplitude and wavelength depends upon the
component values of the inductor and the capacitor of the circuit. To be more precise the
1
NLC
Figure 4.11 for the circuit component of L=1 and C=1 with the initial voltage V).=1V

and current /y = 1 amp.
%

frequency of oscillation @ will be exactly equal to the value and 1s shown in the

**%*% Insert Figure 4.11a here ****

T Cpmlex exponent function
2 T T T T T T

Real Magnitude

-2+

-8

-3

**%* Insert Figure 4.11b here ****
Figure 4.11. A circuit with two energy storage elements creating a sinusoid response
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Since, nothing is ideal in this world and there will be a resistance to the current buildup in
the inductor and a resistance to the charge build-up in the capacitor there will be a
gradual loss of the energy and the sinusoid will die down eventually. We can expedite the
loss by simply adding a resistive element to the circuit. This addition of a Resistor will
not only add to the exponential loss but we will also see a decrement in the wavelength of
the sinusoidal wave. The effect will be seen as if the sinusoid is being sandwiched
between the two exponent curves, one rising from the negative and the other falling from
the positive, both reaching the datum eventually, while squeezing the sinusoid along the
way, see the Figure 4.12.

There is a chance that a fast exponent decay will not let the sinusoid ring at all and the
whole thing will die down without showing any up and down motion at all. Otherwise,

there will be a gradual decrement in the ringing and finally vanishing in the oblivion as
2

time goes by. The exact phenomenon depends upon two factors, the quantity and

LZ

1 . . : : 1. . .
Ic’ if the resistor is placed in series and and T if the resistor is placed in

4(RC)?
parallel (we will develop the mathematics later in the section, but for now we will only
2
use the terms). If R—Z is greater then L we will not see any ringing at all, call it an
C

2

over-damped condition, but if — is less then % there will be some ringing before

reaching the finality, call it an under-damped condition. There is one critical value when
2

IE 1s just equal to Ic and this is the transition between being able to see a trough of

the wave or not, a critically damped condition. The three responses are presented in the

Figure 4.12.a, 4.12.b and 4.12.c. for a series RLC circuit and Figure 4.13.a, 4.13.b and
4.13.c. for a parallel RLC circuit .
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**%*% Insert Figure 4.12a here ****

Critically Damped Response

**%* Insert Figure 4.12b here ****
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**%% Insert Figure 4.12¢ here ****
Figure 4.12. The series RLC circuit of second order differential equations. a) over-
damped, b) Under-damped, c) critically damped responses
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**%* Insert Figure 4.13a here ****
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Critically Damped Response
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**%% Insert Figure 4.13b here ****

Under Damped Respanse
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fime

**%* Insert Figure 4.13c here ****

Figure 4.13. The parallel RLC circuit of second order differential equations. a) Over-
damped, b) Under-damped, c) critically damped responses

We have just discussed how inductors and capacitors form a resonant circuit and how
adding a resistor puts a damper to the natural frequency. Our primary goal in this section
is to study the output (i.e. the current on the inductor) in response to an input, the voltage
on the capacitor. In this section we will discuss the networks of electrical components
and see how they form a system that effects an input excitation. We will analyze the
system of resistors, inductors and the capacitors (RLC) in series as well as in parallel
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combination. The Figure 4.12 is an example of series circuit and Figure 4.13 is the
parallel circuit. Our goal is to know how certain input frequencies are attenuated and
others pass through without any change, as we will be using them in our quest for
designing filters. We begin with the mathematical formulation of the second order
differential equation formed as a result of combining the three elements of an RLC
circuit.

General form of the second order differential equations
The following is the general form of the second order differential equation with two

energy storage elements,
2

d d
a0y+aljj;+a2 dtf =x(1) (4.18)

The method of obtaining the solution is the same as that of the first order differential
equation. We will derive the natural response of zero input condition giving us the
homogenous solution and a forced response providing a particular solution, (the forced
response will be due to an external input excitation applied). The complete solution is
obtained by adding the homogenous solution and the particular solution.

Natural response

This is the response due to the internal stored energy only. There is no external input
force, making x(z) equal to zero and the equation 4.18 becomes,
d d’

a,y +a, z);+a2 d;} =0
Let’s work through an example to find the solution, as we did with the first order
differential equation. We will go through the series as well as parallel combination of
RLC network simultaneously. The circuit of Figure 4.12 is a network of a resistor,
capacitor and an inductor (RLC) in series and 4.13 is the network in parallel. In both
cases, the capacitor was charged, initially with the voltage V), before being switched to
the network.

The followings are the relationship between the current and voltages across different
elements in the circuit.

. L dve . Ve .1
i.=C 2 ip =% i —ZIdet
1 di dv d’i
v, =—|idt v, = Ri vy, =Lt L~ L
¢ Cj : ¢ ‘ dt dt dt>

At the time the switch was thrown towards the capacitor, the Kirchoff’s current and
voltage law describes the relationship for the parallel network as,

io+i, +i, =0
Ve =V =V,

And for the series network as,
Ve +ve+v, =0
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e =ip =1
We get a second order differential equation as a result of summing the current in case of
the parallel network, resulting in the following homogenous equation

dv. v
C—S+-%+i,=0 4.19
TR (4.19)
] d d’i
Substituting the value of v, = i, and &e -y Equation 4.19 we get
dt dt dt
d2 . d .
12L + Li + L iL — 0
dt RC dt LC (4.20)
In case of the series network, summing the voltage provides the following equation
Lﬁ+Ri+ljidr=0 (4.21)
dt C
Taking the derivative of Equation 4.21 we get,
2. .
d lzL +£di+il‘L =0
dt L dt LC (4.22)

Let’s define the following terms,
For series network

R
o=—
2L
And for parallel network
o0=——
2RC
1
0, =—
LC
a,=\a’ - if &’ <o’
jo,=jJo. -a’ ifa’>e’
Assuming the current 7 as an exponential function of time,
i, =Ae"
di
L sde”
dt
d’i
_21 — S2Aest
dt

Substituting these expression into the homogenous solution of Equation 4.20 and 4.22 we
get,

s’ Ae” +s2ade” +w’de” =0 (4.23)
The two solutions for s are

s, =—a+ o’ - s, =—a—+Ja’ -’ (4.24)

Both s; and s, satisfy the Equation 4.23 and we get the following solution describing the
current on the inductor as a function of time,

i, =Ae" + A,e™ (4.25)
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i, =A (e x 2l )+ A, (e x e el ) (4.26)
Where value of 4; and A4, are to be obtained from the initial conditions.

The value o =

R . .
for a parallel network and o = 5L for a series network determines

: 1 : ..
the exponential decay, the value @, = —= determines the original frequency of the

NLC
sinusoid and the value @, =/a’ —@, determines the modified damped frequency of

the sinusoid due to the presence of a resistive element in the circuit. The nature of the
damped frequency @, suggests three possible answers,

a) Roots Real and distinct if ® > @
b) Roots Real and equal ifa” = @’
¢) Roots are complex if a” < @’

The two exponents of Equation 4.26 have an implied decay rate that primarily depends

R . . . . . .
upon the value of . The valuea = 5L is for the resistor in series, and for the resistor in

parallel & = ﬁ . The quantity under square root (yJa’ — ;) needs further

investigation. It should be noticed that the root is real for an over-damped circuit, since
2 2

by definition it means —- or ( - ) is greater thenL . On the other hand if is
4L 4RC LC

L2
2

1 o :
less then — the terms inside the square root ,|— ——— becomes a negative number,
LC 4L LC

an under-damped condition, whose value can only be evaluated by interchanging the
2
terms and multiplying it by the imaginary operator j =+/—1. The term j LI_C - f? or

(jyw; —a’)is our new damped frequency of oscillation. The newer frequency

2 2
W, = ,/L - R—z is less then the original @, = 1/L by factor R >. The third option
LC 4L LC 4L

of critically damped condition of & = @’ merely indicates a transition from over-

damped to under-damp condition.
Evaluating the coefficients A1 and A2

The solution presented in the Equation 4.25 requires one to evaluate the coefficients 4;
and A, based on the initial conditions (the voltage V) present on the capacitor and the
current /y on the inductor at time 7=0). It should be noted that for the series combination
of the RLC circuit the current /) gradually builds up in time but at the instance t=0 there is
no current, that means /jis 0, while in the parallel combination of the RLC circuit the
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least resistive path to the current is through the inductor, resulting in an instantaneous
current /) on the inductor originating from the capacitor.

Thus, for the series circuit the initial conditions are,

i, =0=4, +A2 t=0
d’L (0)——_(A51+As2) t=
1 V.
A, = 2
s, =, 2 (32 —sl) L (4.27)
And for the parallel RLC
i, =1, =4, + 4, t=0
dlL()__—(A51+A52) 1=
VO _ VO
7_5210) 4, _(Sz_Sl )(T_Sllo) (4.28)

Roots Real and Distinct
If & > @ then the values of s, = —a ++/a’ —®. and s, =—a—+a’ —®. becomes
real and the result is the sum of two exponent curves with no ringing of the sinusoid (an

over-damped condition). Substituting the value @, =\/a’ —®; ins; and s, the two
coefficients for the series RLC circuit are reduced to,

_ VO _ VO
' 2Llw B ? 2Lw,
And the current on the inductor is defined as,
Jat—o?)t V. _ot —(Ja?-w> )t
i, == (™ xeV ) L (7 xe V) (4.29)
2La) 4 2Llw,

The output i; of Equation 4.29 is plotted as a function of time in Figure 4.14 for the
following component values in the series RLC circuit of Figure 4.12,
R=1Q C=05F L=0.1H V,=1W
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**%% Insert Figure 4.14 here ****
Figure 4.14. The exponent curves squeezing the sinusoid, a) over-damped,
b) Under-damped, c) critically damped response of a second order differential equation

Similarly, for the parallel RLC network the current on the inductor can be defined by
substituting the constants of Equation 4.28 as follows,

1

S =8,

L T R Y G Ty
L s,—s, L
(4.30)
The output i, of Equation 4.30 is shown in Figure 4.15 as a function of time for the
following component values,

R=1Q C=1F L=5H V,=1W I, =14
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**** Insert Figure 4.15 here ****
Figure 4.3. The exponent curves squeezing the sinusoid, a) over-damped,
b) Under-damped, c) critically damped response of a second order differential equation

As you can see the algebra gets very involved but you can use Matlab to solve the
equations. The figures were being drawn using Matlab scripts and the examples are
presented in the Appendix A.

Roots Real and Equal

The value of a’ = a)02 is the critically damped condition, which is essentially a
borderline condition where the system is just about going to oscillate, but not quite (a
critically damped-condition). By substitution one finds that Ate" is also solution, thus the
combined solution is,

i, =(A4t+A)e™” (4.31)
Roots real and equal should not be a design consideration as it creates a very unstable
circuit. It is only a mathematical probability that the parameters are exactly equal, but it

has no engineering significance. The constant 4; and A4, of the Equation 4.31 are
evaluated for the initial conditions of /, and V), as follows,

1, = 4, =0
di, V _ -
7;:%:/11(6 Y—a(At+ A4,)e™
v
L =4 -ad, t=0
L
V.
4, :TO+05[O
A4,=1,

For the parallel RLC circuit the current on the inductor i; is defined as,
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y
i, = (To+alc)te_“’ +1.e” (4.32)
For the series RLC circuit /. = 0 and the current is defined as
V.
i, = (f")te‘“t (4.33)

The output i of Equation 4.32 for the parallel RLC circuit is shown in Figure 4.16 as a
function of time for the following component values,

R=2Q C=1F L=1H V=1 I=1lamp

**%*% Insert Figure 4.16 here ****

Figure 4.16. The output current as a function of time for a parallel circuit critically
damped.

The output i, for series RLC circuit of Equation 4.33 is shown in Figure 4.17 as a
function of time for the following component values,

R=2Q C=1F L=1H V=1 I=1lamp
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**%*% Insert Figure 4.17 here ****
Figure 4.17. The output current as a function of time for a series critical damped circuit.

Roots Complex

If a® <@’ then the square root becomes a complex number, requiring interchanging the

terms @ and o’ by multiplying the root with the operator j =+/—1. The two exponents
give us the following solution,

: 2 2 . 22
i = A (e x VY g (0 xe AW»)

This is the under-damped condition indicating two complex frequency of oscillation

+ jyw? —a® , one rotating in a clockwise direction and the other counter clockwise (see
the Figure 2.1 describing two complex conjugate waves). The new wavelength is less
then the original frequency @, by a factor of & . With each frequency, there is an
exponential decay multiplier 4,(e"”)and A4,(e ™). The system will respond with a

sinusoid that will soon die down with an exponential decay rate of e ™ .

Using the identity e’ = cos(art) + jsin(wt) and substituting the value of 4; and 4, as
described in the Equation 4.28 for the parallel RLC circuit, we get the following result
describing the current on the inductor as a function of time,

Vo o w . - a .
i, =——e “sinwt+1e (cosw,t + —sinw,t) (4.34)
w,L @y
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The Figure 4.18 is the plot of the current as a function of time for the following circuit
component for the parallel RLC circuit of Figure 4.13.
R=2Q C=005F L=1H V,=1W

1.2 T T T

0.6 1 1 1 1 I 1 I
o

**%*% Insert Figure 4.18 here ****
Figure 4.18. The plot of Equation 4.34, indicating the response of an under-damped
parallel RLC circuit.

For the series RLC circuit the initial current /=0, and the Equation 4.34 is reduced as
follows,
V. )
i, =—"—esinwt (4.35)
w,L

The Figure 4.19 is the plot of the current as a function of time for the following circuit
component for the series RLC circuit of Figure 4.12.
R=2Q C=1F L=0.05H V,=1
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**%*% Insert Figure 4.19 here ****
Figure 4.18. The plot of Equation 4.34, indicating the response of an under-damped series
RLC circuit.

Forced Excitations

The natural response being discussed in the previous section was obtained for the zero
input condition since the input force was removed after the time # > = (. Now we
consider the zero state condition where an input force is applied after the time 1 >= (0. We
begin with the discussion of the step and impulse response and then derive the response
to an arbitrary input using the Convolution process as we did with the first order
differential equations.

Step Response
A constant current / of a unit magnitude applied to an RLC network as shown in Figure
4.13 may be considered a step input u(?). The response to such an excitation should be

considered independently for the three conditions namely; roots complex (a” < @?) the

under-damped condition, roots real (a® > @”) the over-damped and roots equal
(a’ = ) the critically damped condition. The following analysis use the parallel RLC
network as shown in the Figure 4.13

Applying the Kirchoff’s Current Law to the circuit of Figure 4.13 for the unit step
function u(?),
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2. .
d ZZL + Zozdi +w,i, =u(t)
dt dt (4.36)
The particular solution is obtained from the new input condition of the constant current
and we get the following solution
ip(t)=1 t>20 (4.37)
The general solution is obtained for the three damped conditions of roots real, roots
complex and roots equal by adding the homogenous solution to the particular solution
() =iy () +ip(?)

Roots real

We get the following general solution by combining the homogenous solution of
Equation 4.25 and the particular solution of Equation 4.37.

i(t)=Ae™ + A,e™ +1
In order to resolve the coefficients 4; and 4, we need two independent equations, that we
can obtain using the following initial conditions

di
i,(0)=0=A, +4,+1 :%“D=O=4ﬁ+Aﬁ2
4 =2 4, =
§1 =5, S1 =95,
The step response is therefore,
i(t):[ B2 pntp T g +1}u(t) (4.38)
$1 79, §178,

The coefficients s; and s, are real for the roots real condition,

s, =—a+ a’ -
_ 2 2
s, =—a—a’ -]

For the parallel RLC network,
1 1

o=— @
2RC © JLC
The Figure 4.20 is a plot of the Equation 4.38 for the following circuit components of the

Figure 4.13.
R=0.1Q C=1F L=1H V,=1W
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**%*% Insert Figure 4.20 here ****
Figure 4.3. The inductive current of the parallel RLC circuit in response to a unit step
input.

Roots complex
The under-damped condition follows the same pattern as that of Equation 4.38, except;

now the constant s; and s, are complex conjugate numbers, since a)o2 >a’, At this point

we will introduce the phasor equivalent of the complex number s; and s, to simplify the
multiplication operation,

. 2 2 . 2 2
s, =—a+ jol -a s, =—a+ jo, s,|=ya® +
s, =—a—jJo.-a’ $, == O, |s,| =&’ + @,

The polar representation of s; is defined as,

V4 LJjo _ T
3 +¢=tan™ J%a (The operator j adds Eto the phase angle)
2 2
0, =|s)| =|s| = Jo* + @2
j(%+¢) —j(%+¢)
s, = ,e S, =w,e

Substituting the complex values of s; and s, into Equation 4.38 we get the following
simplified term

. , —f(§—¢) (—a+jog )t j(%+¢) —(—a+jo,)t

i(t) = — (e e —e 2 e )+ 1 |u(@)
P17 P2
0 e ™ GoeZopn ooy

i) = SO o (e "2 —e 2 )+l
| °1 7 22
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i(1) = {“’e (sin(e, — % —h)+ l}u(t)

ay

i, (t) = {“’e (1-cos(w, — ¢)}u(t) (4.39)

d
The graph in Figure 4.21 shows the under-damped frequency response to the unit step
function of Equation 4.39, for the following circuit components.
R=2Q C=1F L=1H V,=1W
It should be noticed that the exponentially decaying sinusoid reaches the value of 1 as
time progresses.

Step Response
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**%* Inser Figure 4.21 here ****

Figure 4.21 The step response of complex roots

Complex plane

The complex number representation of the coefficients s; and s, can best be described as
a vector on a rectangular coordinate system. The x-axis is the damping factor o and the y
—axis is the damped frequency @, , while @, is the vector magnitude. Notice the damping

factor o is always on the negative side of the quadrant for positive resistor values. This is

the case with physical components in RLC circuits. (The concept of negative resistance

appears in some networks with feedback amplifiers that act like negative resistors, this is
beyond the scope of our analysis.) The Figure 4.22 describes the rotation of such a vector

10y
a

on the complex plane with the magnitude @,and the angle of rotation ¢ = tan~
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**%*% Insert Figure 4.22 here ****
Figure 4.3. The vector representation of the complex frequency s;

Quality factor
The relationship between the damped frequency @, and the exponential damping factor

is obvious from the definition @, = \/w. —a’ . The decrease in @, is in proportion to

increase in « . The ratio 2—0 can be described as a quality factor in a system with second
a

order differential equation, such as the one being described in the series and parallel RLC
circuit of Figure 4.12 and Figure 4.13. In order to decrease damping we must decrease «,
a zero damping is an infinite Q, and that is the case for a true resonant circuit.

For a series RLC circuit the Quality factor Q is defined as,
@, _ RC R C

0=% vic NI
And for a parallel circuit,

o % R_

20 L
Ve
A damped resonant circuit can be described on the basis of the Quality factor Q as
shown in the Figure 4.23. A O < % is an over-damped, Q = % is the critical-damped,

and O > % is the under-damped and Q = oo is a true resonant circuit with no loss of

energy.
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**** Insert Figure 4.23 here ****
Figure 4.23. The Quality factor representation of the complex number vector

w, =+ o —a’ onarectangular coordinate system

Unit Impulse Response

Finding the response to an impulse function is simply a matter of determining the energy
stored during a short impulse, as defined in the previous section of the first order
differential Equations. In order to determine the initial conditions, first, we would analyze
the affect of the impulse on the capacitor voltage. We know the area under the impulse; it
is equal to 1 by definition. The charge injected due to an impulse, will all be consumed
by the capacitor, in order to build-up a voltage across the terminals.

Jodt=cv =1
y=1
C
The same voltage will appear across the inductor as the rate of change of the current i,
di di 1
V=L— or “L0)=—=; 4.40
dt a0 =™ (3:49)
The particular solution is given as
ip=0att=0

The homogenous solution is given as
i, =Ae" + 4,e™

The complete solution is the homogenous solution plus the particular solution
i(t)=Ae™ + A,e™ +65

For all practical purpose the function 6 = 0 at time ¢ > 0 making the particular solution

ip=0atz>0
We solve simultaneous equations to obtain the coefficients 4; and 4>,
i(0)=0= Ale0 + A2e° A =-4,

40



Ji
M 0y=w? = As.e’ + A5,
o 171 292
t

d
2 2
Alzw—o AZZL
(s, =5y) (s, —5)

The current across the inductor for the under-damped case is therefore,

i, (1) { D (o et }u(t)

Sp =8,
o’ ‘ ,
) (t) = "’ (e_m‘*'.la)[/f _ew_l("dt)
' (2jo,)
: )
i, (t)=—>e"sinw,t (4.41)
(4]

d
The Equation 4.41 must be multiplied with the unit step function u(#) in order for it to be
valid for all time ¢, which merely indicates that at time ¢ < 0 the function is 0.

i, (t) = u(?) 2

a)o
The Figure 4.24 is the graph of the impulse response. Notice the similarities between
natural response and the impulse response.

e “ sinw,t (4.42)
Wy
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**%% Insert Figure 4.24 here ****
Figure 4.24 The impulse response of the second order differential equation for the
Equation 4.42.
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Scaled Impulse Response

The response given in the Equation 4.42 is for the unit impulse function whose area under
the curve is equal to 1. Any other impulse which is a fraction A of the unit impulse will
produce the scaled response accordingly as defined in the Equation 4.43,

i(6) = Au(?) @,

e “sinw,t (4.43)
@,

Response to an arbitrary input

The convolution process discussed in the previous section of the first order differential
equation is also applicable to the second order system. The impulse response convolved
with subsequent input to the system is the response to an arbitrary input. The input signal
is treated as a series of delayed pulses as shown in the Figure 4.9 and the output is
obtained by time-delayed addition of individual responses.

If h(t —t,) is the delayed impulse response and i (¢, ) is the current input then the output
is computed as the following Convolution integral

w(t,) = Z i (t)h(t—1,)A (4.45)

We will be using the Convolution method later on when we develop the algorithm to
realize the digital filters.

Summary

In this chapter we discussed the input and output relationship of systems such as
electrical circuits that are governed by differential equations. We established Convolution
as a method of solving the equations and the discrete time Convolution was discussed as
a possible solution where a computer may be used for processing the input and output.
We analyzed the series and parallel electrical networks for their varying response by
solving the corresponding differential equation. The goal in this chapter was to discuss
the method of Convolution as a solution of differential equation (it would form the basis
of our filter design in the coming chapters) and to see the expected response of systems
that are governed by differential equations.
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