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Introduction   

 

So far we have studied Fourier analysis as a way to observe an event and analyze its 

constituent frequencies. Now we consider the processing of a signal, meaning, 

integrating, differentiating, smoothing and filtering of input signals to produce a desired 

outcome. You will soon realize that many of the processing in a digital signal processing 

meant implementing solutions of differential equations, whether it is a temperature 

control system or speech analysis or vibration studies. The cause and effect has 

relationship that lends itself to the formulation of differential equations. We encounter 

them when we design analog electrical circuits and mechanical systems and since the 

digital signal processing has its roots in the analog signal processing, it is imperative to 

understand the methodology of deriving the algorithms to solve differential equations. 

 

In this chapter we will devote our attention to the Convolution process, as the method of 

solving a differential equation, while the other technique of Laplace Transfer will be 

differed till the next chapter. If the goal is to design a simple integrator or a differentiator 

then we only need to derive a difference equation to be implemented as an iterative 

algorithm in a digital computer, but implementing a digital or analog filter requires 

deriving a closed form expression called Transfer Function. A transfer function defines 

the output of a system, as a function of frequency, indicating what frequencies will be 

suppressed while others are available without degradation. We begin our study with a 

refresher and establish the necessary mathematical foundation. 

Linear Time Invariant System 
  

A system is considered linear if its output is directly proportional to its input, such as 

current and voltage relationship in an electrical system (an example of a non linear 

system is a relationship between current and power). The time invariance condition 

describes a system in which a delay in the input causes same amount of delay in the 

output. The solutions that are presented in this chapter require the system to be Linear 

and Time Invariant.  

 

A Linear System has the Additive property and a Homogeneity property. An additive 

system is where the response to a sum of inputs is the same as the sum of the individual 

responses and a system is homogenous when the scaling of the input by some amount 

also results in the scaling of the output by the same amount (a sinusoidal input remains a 

sinusoidal output without affecting the frequency of the input signal, only the magnitude 

and phase may change). It should be noted that we will be dealing with only Linear 

Systems and the differential equations would be linear differential equations. 

 

A system will exhibit a certain response, depending upon the input energy applied to the 

system. If the response is due to the stored energy such as a charge on a capacitor or 
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current in the inductor, then it is the natural response of the system. But if the response 

is due to some external energy source then it is the forced response of the system.  

 

The condition of a system being Linear is not very strict. All we are asking is that, if the 

forced response of the system is being studied there must not be any prior force present in 

the system and if the natural response of the system is under study the input force must 

have been removed after giving the initial push. The other additive and homogeneity 

property requires that the quantity under study must have a simple one to one relationship 

between the input and output of the system. A system exhibits additive property if the 

output of several individual inputs is the same as output of each independent input 

summed together. For example, if the response of the input )3sin(2 t is )3sin( 1t and 

)4sin(5.1 t is )4sin( 2t  then in a linear system the response of )3sin(2 t + )4sin(5.1 t  

would be )3sin( 1t + )4sin( 2t  as shown in Figure 4.1.  

System

System

System

)3sin(2 t

)4sin(5.1 t

 
)3sin(2 t + )4sin(5.1 t  

)3sin( 1t

)4sin( 2t

 )3sin( 1t + )4sin( 2t  

 
 

 **** Insert Figure 4.1 here **** 

Figure 4.1 Showing additive property of a linear system, the combined output is the same 

as individual output summed together. 

 

In other words if the input is decomposed into several distinct excitations and the output 

is a superimposed result of each individual excitation, the system is additive in nature. 

The Time Invariant condition refers to the fact that if the input excitation is delay by t 

amount of time then the output will also be delayed by the same amount of time.  

 

 

Differential Equations 
A differential equation is formed when the function and the rate of change of the function 

(or the derivative) appears together in the same algebraic equation. The order of a 

differential equation is defined as the highest order of the derivative contained in it. A 

first order differential equation is formed in an electrical network if there is only one 

energy storage element in the circuit, such as a capacitor or an inductor. The current 

across the capacitor is proportional to the rate of change of the voltage applied, 
dt

dv
Ci  . 

Similarly, the voltage across an inductor is proportional to the rate of change of the 
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current applied, 
dt

di
Lv  . (Resistors are not considered energy storage elements.) A 

second order differential equation is formed when there are two different energy 

storage elements in a circuit, such as a capacitor and inductor in series or parallel, 

resulting in a second derivative in the system. The current across a parallel combination 

of a capacitor and an inductor is v
Ldt

vd
Ci

1
2

2

 , while voltage across a series 

combination of a capacitor and an inductor is i
Cdt

id
Lv

1
2

2

 .  

 

Systems Response 
 

A system, which is capable of storing energy such as an electrical circuit or mechanical 

system responses to a stimulus in two different ways, natural response and a forced 

response. The behavior determined by the internal energy storage elements is the natural 

response and the behavior determined by an external force is the forced response. Think 

about the energy stored when a spring is stretched. The spring may be forced to vibrate at 

any frequency by applying an external alternating force, but if the spring is stretched and 

released it will vibrate at its characteristic frequency determined by the specific spring 

constant. The natural response is the response due to the stored energy being released at 

natural pace. A system will always exhibit its natural response once the input excitation is 

removed from the system. Even if we don’t remove it, as in case of obtaining a forced 

response, we can think about the input as a series of impulses applied and derive a 

solution as if several natural responses occurring sequentially. This is the basis for 

Convolution and will be discussed later in the chapter. It is easier from analysis point of 

view that we study the two responses independently and combine the result at our 

convenience at a later time. The system is guarantied not to alter the behavior since we 

are studying linear systems only.  

 

Solutions of differential equations 
Finding a response to an input excitation requires one to provide a homogenous solution 

as well as a particular solution.  The homogenous solution is for the homogenous 

differential equation of the system formed as a result of applying the basic laws of 

physics on the circuit components of the system and it is devoid of an external force. It is 

also the natural response of the system as it is the result of solving equation when the 

input force is no longer in action. It is like seeing the residual effect due to the energy 

stored in the system. A particular solution of a differential equation is any function that 

satisfies the given differential equation. We will see that the particular solution is 

essentially the forced response of the system and the homogenous solution is the natural 

response of the system. 
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Linear Differential Equations 
A linear differential equation is formed in a linear time invariant system as a result of 

meeting certain initial condition criteria. For the forced response of the system there must 

not be any force before the time 0t and for the natural response, the input force must 

be gone after time 0t . These are the initial condition requirements for a differential 

equation to be linear. The initial condition for the natural response is also called zero 

input condition and for the forced response is the zero state condition. The forced 

response of a system that already has an input force at 0t  creates a non-linear 

differential equation and it is not of interest to us from Digital Signal Processing point of 

view.  

 

The homogenous solution and the particular solution can be derived separately for a 

linear system and the final result may be obtained by a simple addition of the two 

solutions.  

 

We can solve differential equations using Convolution method or the Laplace Transform 

method. Both are equally important in their own respect and have usefulness in different 

applications. Convolution is the primarily tool in image processing while Laplace 

Transform is being used mainly in signal processing such as speech and controls systems.  

 

The Laplace transform essentially converts a time domain signal into frequency domain 

and produces a response that is best suited for frequency analysis. Analog filters are 

implemented for accepting a desired frequency range as well as rejecting an unwanted 

frequency band from input signals. They are also being used during speech compression 

and transmission as they can be designed to produce a desired waveform. The Laplace 

transform is ideal for such Filter designs. Convolution on the other hand is a time domain 

process and is being mainly used in operations such as smoothing and filtering of input 

data. 

 

The challenge in digital signal processing is to find a discrete time solution of a 

differential equation that has a counterpart continuous time solution. The theory of 

Laplace Transform is the basis for frequency domain analysis and through that the z 

Transform is being derived, which forms the basis for a discrete sample solution. 

Similarly, Convolution is the technique for solving time domain continuous time 

differential equations and there is a companion discrete time solution, suitable for 

software algorithms of Digital Signal Processing. 

 

Filters, whether analog or digital are implemented as close form expressions of 

differential equation solutions. 

 

The general form of a differential equation 
An nth order differential equation is defined as 

 )(
2

2

210 tx
dt

yd

dt

yd
a

dt

dy
aya

n

n

   
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Where x(t) and y(t) represent the input and output respectively and an are the constant 

coefficients describing the characteristics of the system elements. If the input excitation is 

removed i.e. x(t) = 0 then the resulting equation is called homogenous differential 

equation and requires only a general solution, otherwise, it is an inhomogeneous equation 

and requires a particular solution. It should be noted that a complete solution is a general 

solution plus a particular solution.  

 

In the scope of digital signal processing, only the solutions of the first and the second 

order linear differential equation are considered. Other higher forms can be represented 

as cascaded or parallel combinations of simple first and second order equations. A 

solution of exponent form will always satisfy any order linear differential equation. 

 

First order differential equations 
The general form of differential equation with one energy storage element is given as, 

)(10 tf
dt

dy
aya        (4.1) 

Where y is the output and x is the input to the system. 

 

Natural response 
Removing the input source at time t =0 the input x becomes zero at 0t and the 

differential equation becomes, 

010 
dt

dy
aya  

We will assume a solution of exponent form, 

 
kt

kt

kAe
dt

dy

Aey





 

Selecting a value of 
0

1

a

a
k   satisfies the Equation 4.1 

The coefficient A can be solved using the initial condition of the system and for that let’s 

work through an example. The capacitor C=1uF in the Figure 4.2 was initially charged 

with voltage V0. At time t=0 the switch was then thrown in the position of the resistor 

R=1k, essentially removing the power source from the system. For the circuit component 

as given, we will determine the voltage as a function of time after the capacitor is 

connected with the resistor and also find the discrete time solution of the network for the 

sampling rate of 10 samples per second.  
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  **** Inser Figure 4.2a here ****  

 

 

V
C

R

 
  **** Inser Figure 4.2b here ****  

Figure 4.2. Circuit showing an RC network. a) The capacitor is connected to the power 

source. b). The power is switched off at 0t . 

 

Assuming at t=0 the switch was thrown towards the resistor. Applying the Kirchoff’s 

voltage law on the RC network we get a first order differential equation as a result of 

equating the voltages, 

)()( tvtv RC   

Using Kirchoff’s current law of summing the current at a node, we get, 

0)()(  titi RC  

The voltage and current across the resistor is, 

 RR Riv   
R

v
i R

R   

  The voltage and current across the capacitor is, 

 idt
C

Vtvc

1
)( 0  

dt

dv
Ci C

c   

We get a homogenous equation by summing the two current 

0
R

v

dt

dv
C CC  
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0 C

C v
dt

dv
RC  

Assuming vC as an exponential function of time, 

 kt

C Aev   ktC kAe
dt

dv
  

Substituting the expressions into the homogenous solution 

 0 ktkt AeRCkAe  

  

RC
k

AeRCk kt

1

0)1(





 

 
RC

t

h Aev


       (4.2) 

The Equation 4.2 is the homogenous solution of a first order differential equation. To find 

the value of A we apply the initial condition of the voltage v=V0 at t=0. 

0

0 VAe   0VA   

Substituting the value of A and k in the expression we obtained the relationship of the 

voltage as a function of time as the solution of homogenous differential equation, 

RC
t

H eVtv


 0)(       (4.3) 

The particular solution is for the response due to the input force applied after the time t=0 

and for our example we have 0 input force thus, 

0pv       (4.4) 

The complete solution is obtained by adding homogenous solution (Equation 4.3) and the 

particular solution (Equation 4.4), 

RC
t

t eVv


 0  

Figure 4.3 is the plot of the voltage as a function of time for an initial voltage of 1V, R = 

1k and C=1uF. 
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 ****Insert Figure 4.3 here **** 

 

Figure 4.3. The plot of the voltage as a function of time for the circuit of Figure 4.2b. 

 

Forced Response  
The natural response of a circuit will remain same regardless of the input applied, but the 

response to an external source depends entirely on the input type. Although the study of a 

response to an arbitrary input is our goal but we would derive the solution through the 

study of step response and the impulse response.  An impulse is considered a special 

case of the step (with a very short duration) and an arbitrary input could be considered as 

an input of series of impulses very close to each other, albeit scaled by some magnitude 

and delayed by some time. If we know the response to a unit impulse, we can always find 

the response to an arbitrary input by considering the input as a series of impulses. 

Computing the cumulative affect of the previous responses and adding them to the output 

of the new response we can find the complete response. The process is known as 

Convolution and is simply a multiplication and addition operation; the multiplication is 

for scaling the input to the unit impulse and addition for taking into account the previous 

output. The frequency response is of special interest, as it would help us design circuits 

that act as frequency filters.  

 

Step Response 
Applying a constant current I at the instance t = 0 is synonym to a step input. The switch 

in the Figure 4.4 when thrown in the position of the capacitor will let the current flow 

into the RC circuit. We can imagine the response conceptually that the charge on the 

capacitor will slowly build up until it reaches the level of the voltage that appears on the 

Resistor R as well. Mathematically we can calculate the time it takes for the capacitor to 

reach the final voltage (v=RI) and that would be the final response of the system for a 

step input. 
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Applying the Kirchoff’s Current Law on the circuit, 

Iv
Rdt

dv
C 

1
 

Where I indicate the constant current through the RC system. 

The homogenous solution remains the same as described in the Equation 4.2  

RC
t

H Aev


  

The particular solution is obtained by the new input condition of the constant current and 

we get the following particular solution 

 IRvP    

You can verify the answer by placing the derivative 0
dt

dv
 into the general differential 

equation.  The complete solution is obtained by adding the homogenous solution and the 

particular solution, 

PH vvv   

IRAev RC
t




      (4.5) 

The coefficient A is obtained from the initial condition 

0)0( v  

 00  IRAe   IRA   

Substituting the value of A into Equation 4.5 we obtain the voltage as a function of time, 

 )1( RC
t

eIRv


       (4.6) 

The Figure 4.4b is the plot of the Equation 4.6 showing the exponential rise of the voltage 

until it reaches the near full value of v=RI. The time constant T for an RC circuit is 

defined as the time it takes for the voltage to rise up to 0.63 of its full value and after the 

4T the voltage reaches 99.98% of the full value. 

 

C RDC

 
  **** Insert Figure 4.4a here ****  
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  **** Insert Figure 4.4b here ****  

 

Figure 4.4a.RC network for the Equation 4.6. b) The step response of the first order 

differential equation solution of the Equation 4.6 for I=1 and R=1. 

 

Discrete time solution 

The discrete time sampling meant taking inputs regularly at a predetermined interval. The 

term is implied in Digital Signal Processing as it takes a finite amount of time for a 

processor to acquire and process the data before the next sample is being obtained. If the 

sampling rate of the input signal is 
t

1 samples per second, then the equivalent 

continuous time t for the kth sample is tk . To derive a discrete time solution of 

Equation 4.1 we use the method of backward differences, 

kk

kk xy
t

yy
RC 



 1  

Where xk is the current input, yk is the current output and y(k-1) is the previous output and 

the differential equation is simply a difference equation. Solving for yk, we have, 

kkk x

RC
t
RC

t

y

RC
t

y







 

11

1
1  

If the t is sufficiently small the term 1)1( 
RC

t  may be approximated as, 

RC
t

RC
t   1)1( 1  

Using a new term for 
RC

ta 0 and 
RC

tb  11 , we get, 

110  kkk ybxay         (4.7) 

Using the input voltage x=1V, RC =1 and sampling period 1.0t , we get, 
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19.01.0  kk yxy  

The general solution described in the Equation 4.7 is suitable for an iterative software 

algorithm for a digital computer implementation. Figure 4.5 shows the comparison 

between the discrete time solution and the continuous time solution of Equation 4.1 and 

Equation 4.7.  

 
 

  **** Inser Figure 4.5 here ****  

Figure 4.5. Comparison of the discrete time solution and the continuous time 

solution for the circuit of Figure 4.2. 

 

Unit Impulse Response 
By definition, a unit impulse is a short duration pulse with a total area equal to one. The 

Figure 4.6 depicts such a function with a width of  and a height of 


1
 and is denoted by 

the symbol )(t . It may not be possible to produce such a function in practice but 

conceptually it would helps us formulate the response of a continuous function, for we 

can think of a continuous function of time as a series of impulses. 
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

1

0

0 






Singular

t
0

)(
0

0





t

t

 
  **** Inser Figure 4.6 here ****  

Figure 4.6. An impulse function of width  and a height of 


1
 

In order to find a solution of the homogenous equation for a unit impulse input, we need 

to find the amount of energy stored in the energy storage elements of the circuit, (such as 

capacitors and inductors) due to the impulse applied. Consider the charge build up in a 

capacitor due to the current function whose area equals one, 

  1CVidt   

C
V

1
  

Similarly, the current stored in an inductor due to voltage spike function whose area 

equals one, 

  1LVvdt   

L
V

1
  

Suffice to say that the initial condition produced by an impulse current on a capacitor is a 

voltage 
C

V 1
0   and the current stored in an inductor is 

L
I 1

0  .  

The requirement is to solve the solution of the following differential equation, 

 v
Rdt

dv
C

1
 

The particular solution is given as  

 Pv  at 0t  

For all practical purpose the function 0 at time 0t making the particular solution 

 0Pv  at 0t  

Using the above-mentioned initial conditions we can obtain the complete response by 

adding the homogenous and the particular solution just like we did with the step input 

solution.  

PH vvv   




RC
t

Aev  at 0t       (4.8) 

The coefficient A is obtained from the initial condition 
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C
Vv 1)0( 0   

 
C

Aev 10     
C

A 1  

Substituting the value of A into Equation 4.8 we obtain the voltage as a function of time, 

  


RC
t

e
C

v )1(  at 0t  

Substituting  0 at time 0t , we get the complete solution (or the response) to an 

impulse input in Equation 4.9. 

 RC
t

e
C

tv



1

)(         (4.9) 

Notice the similarities between the natural response (see Equation 4.2) and the impulse 

response of Equation 4.9. The comparison shows that the impulse response is essentially 

the same as the natural response of the system. The impulse function is being used only 

to visualize the amount of energy one can transfer in one go, without violating the initial 

condition of the zero input response. It may not be physically possible to provide such a 

force in reality, but it simplifies the mathematics. Once we determine the response of an 

impulse function, it is easier to derive the response of an arbitrary input function and that 

will be explained in the Convolution process later in the chapter.  The Figure 4.7 is the 

plot of the Equation 4.9 as 0t . 

 

 
  **** Insert Figure 4.7 here ****  

Figure 4.7. The impulse response of the first order differential equation as 0t  

 

Scaled Impulse Response 
The impulse function doesn’t have to be a unit area function. If the height is being halved 

the area will be halved and the output would be simply half of what a unit impulse 

response is.  

  5.0CVidt   
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C
V

5.0
  

RC
t

e
C

tv



5.0

)(  

In other words if the input is scaled by a factor  the output would be 

RC
t

e
C

tv





)(  

Arbitrary Input and Convolution  

It is easier to obtain a solution for differential equations if the input is a well-defined 

mathematical function such as a step, an impulse or a sinusoidal input. Simply find the 

first and second derivative, plug-in the values and solve for the equations and get the 

output response. But an arbitrary input has no well-defined shape and form; a data 

acquisition system reading a channel value has no notion of the value being read. Events 

happen without set mathematical values. Take temperature and pressure for example. In 

order to design a control system for them, we must be able to predict the behavior of the 

system for an arbitrary input signal. In other words find the response of the system to an 

arbitrary input.  

 

One way to analyze such an input is to look through the window of an impulse. If we 

breakdown the input as if it is a series of scaled impulses the job gets easier, as shown in 

Figure 4.8. We already know how to get the impulse response for an impulse function 

(see the Equation 4.9 for an RC network). Now it is just a matter of finding the scaling 

factors and getting the scaled responses. Then simply add the individual responses (of 

course delayed by some time) and we have the desired outcome. This is Convolution.  

0 1 2 N
-1

 N
 

  **** Insert Figure 4.8 here ****  

 Figure 4.8. Approximating an input as a series of impulses 

 

The Convolution Process 
The first step in Convolution is to isolate the impulse from the rest of the input and then 

scale it. This would create a trail of unit impulse scaled by the input signals at specific 

instance of time as shown in Figure 4.9. Without making it sound too complicated, if you 

think about it, the whole process is akin to simply taking the instantaneous values of the 

input signal at a specific interval of time. The value being acquired is the scaled unit 

impulse value, but of course delayed by the sampling interval. In this scheme, each new 
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response will have contribution from the previous response that we must take into 

consideration into the current output. 

Scaled

impulse

Impulse

Response

 
 **** Insert Figure 4.9 here ****  

Figure 4.9. Input sliced into a series of impulse and the response 

 

Discrete Time Convolution 
 

 

Mathematically, we can express the operation of discrete time sampling as shown in the 

Figure 4.9. A trail of areas delayed by the interval t . If t and )(tis  are the instantaneous 

sample time and sample value and tn and )( nth are the nth sample time and unit impulse 

response then the nth delayed response is ttthti nns  )()( . The one before that is 

ttthti nns   )()( 11 , all the way to the beginning ttthtis  )()( 00 . What we are doing is 

going back in time and finding the response of the previous sample again but this time 

using the next part of the impulse response. Every time you multiply the current input 

with the current impulse response you must add it to it the previous sample value 

multiplied by the delayed impulse response, see Figure 4.10 for a graphical description. 

Convolution process is the mathematical operation of accumulating the current response 

plus all the previous responses, 
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ttthtittthtittthtitv nnsssn   )()(...)()()()()( 111100







1

0

)()()(
n

k

kksn ttthtitv       (4.10) 

Taking the limit as 0t the summation in Equation 4.10 becomes an integral as 

shown in Equation 4.11. 

 

t

t

kks dttthtitv

0

)()()(   0t     (4.11) 

We can obtain the discrete time equivalent of the Equation 4.10 by substituting nth 

impulse response and thk kt   input sample as shown in Equation 4.12. Notice the sign 

of the convolution operator x(n)*h(n), a multiplication followed by the addition. 





n

k

knhkxnhnx
0

)()()()(       (4.12) 

One disadvantage with Equation 4.12 is that the multiplication process is done over the 

entire array of input values, while in practice the impulse response is usually short and 

most multiplications result in zeros. We can avoid this unnecessary multiplication by 

using the commutative property of the convolution as shown later in the section. 

 

The Equation 4.13 is the discrete time representation of a first order differential equation  

110  kkk ybxay        (4.13) 

We can obtain a solution of the above equation through convolution process if the 

digitized version of the unit impulse response is provided. Assuming the discrete time 

impulse response is a series )(),1()...1(),0( nhnhhh  and the input samples are 

)(),1()...1(),0( nxnxxx   then the convolution is simply a multiply and add operation as 

shown in Equation 4.14. 





k

i

ikxihky
0

)()()(       (4.14) 

Note: Although the impulse response may be infinite in length, but after a while the 

response becomes negligible and for all practical purpose values beyond the kth sample is 

treated as 0. 

 

We can prove that Equation 4.14 is indeed a solution of Equation 4.13 (or Equation 4.1) 

with the following analogy, 

 

Assuming the input is a unit impulse  

 










0,0

0,1
)()(

k

k
kkx   

Substituting the unit impulse value )(kx into Equation 4.13 we get the following series, 
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n

nn bahy

bahy

bahy

ahy

10

2

1022

1011

000











   

         (4.15) 

But for an arbitrary input signal )(kx , we get 














k

i

k

ikxihky

xbakxbakxaky

xbaxbaxay

xbaxay

xay

0

10100

2

101002

1001

00

)()()(

)0(...)1()()(

)0()1()2(

)0()1(

)0(

  

We can see that the coefficients of above equations match the impulse response of the 

Equation 4.13, which is given by Equation 4.15. 

 

 

 

 

Properties of Convolution 

The convolution of two different sequences can be combined in different ways, 

 

Commutative Property 

 The order in which two sequences are convolved is not important. The following 

equality holds, 

 

 x(n)* h(n) = h(n)*x(n) 

 

Associative Property 

If two systems with responses h1(n) and h2(n) are connected in series, an equivalent 

system is one that has a response equal to the convolution of h1(n) and h2(n). 

 x(n)*{ h1(n) + h2(n)}= {x(n)* h1(n)}+ {x(n)*h2(n)} 

 

Distributive Property 

If two systems with responses h1(n) and h2(n) are connected in parallel, an equivalent 

system is one that has a response equal to the sum of h1(n) and h2(n). 
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 x(n)*{ h1(n) + h2(n)}= {x(n)* h1(n)}+ {x(n)*h2(n)} 

 

Graphical representation of Convolution process 

As descried in Equation 4.14 the Convolution is simply a multiply and add process, thus, 

for any discrete time input sequence x(k) and the discrete impulse response sequence h(k) 

of the system, the output sequence y(k) may be computed using Equation 4.16, 





k

i

ikxihky
0

)()()(       (4.16) 

 

 

 

 

 

You may recognize that we only need to perform the multiplication process for the range 

of numbers in which the impulse response h(n) has non zero values. Let’s take an 

example of a system that has the following impulse response, 

 

 

h(0)=3 

h(1)=2 

h(2)=1 

h(3)=0 

. 

h(n)=0 

And the input sequence as shown in Figure 4.10. 

 

Notice, the impulse response has zero values beyond the range k > 2. Thus, the 

convolution operation may be reduced as shown in Equation 4.17. 





2

0

)()()(
k

knxkhny       (4.17) 

To illustrate the steps of discrete convolution, let’s say we have input sequence x(n) and 

h(k) as shown in Figure 4.10. The out y(n) is computed as followings, 

 

9010233)0( y  

 9013213)1( y  

14112233)3( y  

17213233)4( y  

12313213)5( y  

11311223)6( y  
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  **** Insert Figure 4.10 here ****  

Figure 4.10.The convolution of discrete time sampling, the arrows showing computation 

of 17213233)4( y . 

 

The Convolution operation forms the basis for the digital filtering technique that we will 

discuss in chapter 6 and 7. 

 

Second order differential equations 
 

The simple exponential response of the first order differential equation was easy to 

visualize, but the second order differential equations are more complex in their response; 

simply, because there are two energy storage elements and their different possible 

combinations produce varying responses. Before we proceed further with a full 

mathematical development it would be helpful to create an intuitive feelings about the 

behavior of such systems in which two energy storage elements are in a loop, such as an 

inductor and a capacitor, one is capable of storing the current and the other is capable of 

storing the voltage.  

 

A system as shown in the circuit of Figure 4.11 will serve the purpose for this example. 

We would like to see the inductive current as the response to the input voltage applied on 

the capacitor. Let’s say the switch S1 on the capacitor C was originally connected to the 

voltage supply, letting the capacitor store certain amount of charge. Once the capacitor 

was fully saturated we throw the switch towards the inductor L, creating a loop between 
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the inductor and the capacitor. The capacitor will start feeding the current to the inductor 

and the inductor will start building-up the voltage across its terminals. The inductor will 

gain the energy loss from the capacitor, but then the change of voltage across the inductor 

will start feeding the charge back into the capacitor. The charge gain by the capacitor 

back from the inductor will be seen by the inductor as a current source and it will start 

building the voltage all over again, this back and forth yo-yo of energy loss and gain will 

last forever as long as we have ideal components. 

 

The rise and fall of the charge on the capacitor and the current on the inductor is a 

sinusoidal function of time whose amplitude and wavelength depends upon the 

component values of the inductor and the capacitor of the circuit. To be more precise the 

frequency of oscillation  will be exactly equal to the value 
LC

1
 and is shown in the 

Figure 4.11 for the circuit component of L=1 and C=1 with the initial voltage V0.=1V 

and current I0 = 1 amp. 

V

C
H

 
 

  **** Insert Figure 4.11a here ****  

 
 

  **** Insert Figure 4.11b here ****  
Figure 4.11. A circuit with two energy storage elements creating a sinusoid response 
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Since, nothing is ideal in this world and there will be a resistance to the current buildup in 

the inductor and a resistance to the charge build-up in the capacitor there will be a 

gradual loss of the energy and the sinusoid will die down eventually. We can expedite the 

loss by simply adding a resistive element to the circuit. This addition of a Resistor will 

not only add to the exponential loss but we will also see a decrement in the wavelength of 

the sinusoidal wave. The effect will be seen as if the sinusoid is being sandwiched 

between the two exponent curves, one rising from the negative and the other falling from 

the positive, both reaching the datum eventually, while squeezing the sinusoid along the 

way, see the Figure 4.12. 

 

 

There is a chance that a fast exponent decay will not let the sinusoid ring at all and the 

whole thing will die down without showing any up and down motion at all. Otherwise, 

there will be a gradual decrement in the ringing and finally vanishing in the oblivion as 

time goes by. The exact phenomenon depends upon two factors, the quantity 
2

2

4L

R
 and 

LC

1
, if the resistor is placed in series and 

2)(4

1

RC
 and 

LC

1
if the resistor is placed in 

parallel (we will develop the mathematics later in the section, but for now we will only 

use the terms). If  
2

2

4L

R
is greater then 

LC

1
we will not see any ringing at all, call it an 

over-damped condition, but if 
2

2

4L

R
 is less then 

LC

1
 there will be some ringing before 

reaching the finality, call it an under-damped condition. There is one critical value when 

2

2

4L

R
 is just equal to 

LC

1
 and this is the transition between being able to see a trough of 

the wave or not, a critically damped condition. The three responses are presented in the 

Figure 4.12.a, 4.12.b and 4.12.c. for a series RLC circuit and Figure 4.13.a, 4.13.b and 

4.13.c. for a parallel RLC circuit .  
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  **** Insert Figure 4.12a here ****  

 

 
 

  **** Insert Figure 4.12b here ****  
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  **** Insert Figure 4.12c here ****  

Figure 4.12. The series RLC circuit of second order differential equations. a) over-

damped, b) Under-damped, c) critically damped responses 

 

 

 
 

**** Insert Figure 4.13a here ****  
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**** Insert Figure 4.13b here ****  

 

 

 
 

**** Insert Figure 4.13c here ****  

 

Figure 4.13. The parallel RLC circuit of second order differential equations. a) Over-

damped, b) Under-damped, c) critically damped responses 

 

 

We have just discussed how inductors and capacitors form a resonant circuit and how 

adding a resistor puts a damper to the natural frequency. Our primary goal in this section 

is to study the output (i.e. the current on the inductor) in response to an input, the voltage 

on the capacitor. In this section we will discuss the networks of electrical components 

and see how they form a system that effects an input excitation. We will analyze the 

system of resistors, inductors and the capacitors (RLC) in series as well as in parallel 
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combination. The Figure 4.12 is an example of series circuit and Figure 4.13 is the 

parallel circuit. Our goal is to know how certain input frequencies are attenuated and 

others pass through without any change, as we will be using them in our quest for 

designing filters. We begin with the mathematical formulation of the second order 

differential equation formed as a result of combining the three elements of an RLC 

circuit.  

 

General form of the second order differential equations 

The following is the general form of the second order differential equation with two 

energy storage elements, 

)(
2

2

210 tx
dt

yd
a

dt

dy
aya        (4.18) 

The method of obtaining the solution is the same as that of the first order differential 

equation. We will derive the natural response of zero input condition giving us the 

homogenous solution and a forced response providing a particular solution, (the forced 

response will be due to an external input excitation applied). The complete solution is 

obtained by adding the homogenous solution and the particular solution. 

 

Natural response 
 

This is the response due to the internal stored energy only. There is no external input 

force, making x(t) equal to zero and the equation 4.18 becomes, 

0
2

2

210 
dt

yd
a

dt

dy
aya  

Let’s work through an example to find the solution, as we did with the first order 

differential equation. We will go through the series as well as parallel combination of 

RLC network simultaneously. The circuit of Figure 4.12 is a network of a resistor, 

capacitor and an inductor (RLC) in series and 4.13 is the network in parallel. In both 

cases, the capacitor was charged, initially with the voltage V0, before being switched to 

the network. 

 

The followings are the relationship between the current and voltages across different 

elements in the circuit. 

 
dt

dv
Ci C

C    
R

v
i R

R    dtv
L

i LL

1
 

  idt
C

vC

1
  CR Riv   

dt

di
Lv L

L   
2

2

dt

id
L

dt

dv LL   

At the time the switch was thrown towards the capacitor, the Kirchoff’s current and 

voltage law describes the relationship for the parallel network as, 

0 LRC iii  

LRC vvv   

And for the series network as, 

0 LRC vvv  
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LRC iii   

We get a second order differential equation as a result of summing the current in case of 

the parallel network, resulting in the following homogenous equation 

 0 L
RC i

R

v

dt

dv
C        (4.19) 

Substituting the value of 
dt

di
Lv L

R  and 
dt

id
L

dt

dv LC

2

 in Equation 4.19 we get 

0
11

2

2

 L
LL i

LCdt

di

RCdt

id

      (4.20)
 

In case of the series network, summing the voltage provides the following equation 

 0
1

  idt
C

Ri
dt

di
L       (4.21) 

Taking the derivative of Equation 4.21 we get, 

0
1

2

2

 L
LL i

LCdt

di

L

R

dt

id

      (4.22)  

Let’s define the following terms, 

For series network  

L

R

2


 
And for parallel network  

RC2

1


 

LC
o

1


 
22

od     if 22

o   

22   od jj  if 22

o   

Assuming the current i as an exponential function of time, 

 st

L Aei    

 stsAe
dt

di
  

stAes
dt

id 2

2

2

  

Substituting these expression into the homogenous solution of Equation 4.20 and 4.22 we 

get, 

 02 22  ststst AeAesAes        (4.23) 

The two solutions for s are 

 
22

1 os     
22

2 os      (4.24) 

Both s1 and s2 satisfy the Equation 4.23 and we get the following solution describing the 

current on the inductor as a function of time, 

 tsts

L eAeAi 21

21         (4.25) 
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)()(
)(

2

)(

1

2222 tttt

L
oo eeAeeAi

      (4.26) 
Where value of A1 and A2 are to be obtained from the initial conditions.  

The value 
RC2

1
 for a parallel network and 

L

R

2
 for a series network determines 

the exponential decay, the value 
LC

o

1
  determines the original frequency of the 

sinusoid and the value 2

0

2  d  determines the modified damped frequency of 

the sinusoid due to the presence of a resistive element in the circuit. The nature of the 

damped frequency d  suggests three possible answers,  

a) Roots Real and distinct if 22

o   

b) Roots Real and equal if 22

o   

c) Roots are complex if 22

o   

The two exponents of Equation 4.26 have an implied decay rate that primarily depends 

upon the value of  . The value
L

R

2
 is for the resistor in series, and for the resistor in 

parallel
RC2

1
 . The quantity under square root )( 2

0

2    needs further 

investigation. It should be noticed that the root is real for an over-damped circuit, since 

by definition it means 
2

2

4L

R
or (

24

1

RC
) is greater then

LC

1
. On the other hand if 

2

2

4L

R
 is 

less then 
LC

1
the terms inside the square root 

LCL

R 1

4 2

2

  becomes a negative number, 

an under-damped condition, whose value can only be evaluated by interchanging the 

terms and multiplying it by the imaginary operator 1j . The term 
2

2

4

1

L

R

LC
j   or 

)( 22

0  j is our new damped frequency of oscillation. The newer frequency 

2

2

4

1

L

R

LC
d   is less then the original 

LC
o

1
  by factor 

2

2

4L

R
.  The third option 

of critically damped condition of 22

o   merely indicates a transition from over-

damped to under-damp condition. 

 

Evaluating the coefficients A1 and A2 

 

The solution presented in the Equation 4.25 requires one to evaluate the coefficients A1 

and A2 based on the initial conditions (the voltage V0 present on the capacitor and the 

current I0 on the inductor at time t=0). It should be noted that for the series combination 

of the RLC circuit the current I0 gradually builds up in time but at the instance t=0 there is 

no current, that means I0 is 0, while in the parallel combination of the RLC circuit the 
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least resistive path to the current is through the inductor, resulting in an instantaneous 

current I0 on the inductor originating from the capacitor.  

 

Thus, for the series circuit the initial conditions are, 

 210 AAiL    0t   

)()0( 2211

0 sAsA
L

V

dt

diL   t = 0   

L

V

ss
A 0

21

1 )
1

(


   L

V

ss
A 0

12

2 )
1

(


    (4.27) 

And for the parallel RLC  

210 AAIiL    0t    

)()0( 2211

0 sAsA
L

V

dt

diL   t = 0     

))(
1

( 02

0

21

1 Is
L

V

ss
A 


   ))(

1
( 01

0

12

2 Is
L

V

ss
A 


  (4.28) 

Roots Real and Distinct 

If 22

o   then the values of 22

1 os    and 22

2 os   becomes 

real and the result is the sum of two exponent curves with no ringing of the sinusoid (an 

over-damped condition). Substituting the value 2

0

2  d  in s1 and s2, the two 

coefficients for the series RLC circuit are reduced to, 

dL

V
A

2

0

1     
dL

V
A

2

0

2   

And the current on the inductor is defined as, 

)(
2

)(
2

)(0)(0
2222 tt

d

tt

d

L
oo ee

L

V
ee

L

V
i





    (4.29) 

The output iL of Equation 4.29 is plotted as a function of time in Figure 4.14 for the 

following component values in the series RLC circuit of Figure 4.12, 

1R  FC 5.0  HL 1.0  VV 10    
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 **** Insert Figure 4.14 here ****  

Figure 4.14. The exponent curves squeezing the sinusoid, a) over-damped,  

b) Under-damped, c) critically damped response of a second order differential equation 

  

Similarly, for the parallel RLC network the current on the inductor can be defined by 

substituting the constants of Equation 4.28 as follows, 

))()(
1

())()(
1

(
)(

01

0

12

)(

02

0

21

2222 tttt

L
oo eeIs

L

V

ss
eeIs

L

V

ss
i

  





  

 (4.30) 
The output iL of Equation 4.30 is shown in Figure 4.15 as a function of time for the 

following component values, 

1R  FC 1  HL 5  VV 10    AI 10   
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  **** Insert Figure 4.15 here ****  

Figure 4.3. The exponent curves squeezing the sinusoid, a) over-damped,  

b) Under-damped, c) critically damped response of a second order differential equation 

 

As you can see the algebra gets very involved but you can use Matlab to solve the 

equations. The figures were being drawn using Matlab scripts and the examples are 

presented in the Appendix A.  

 

  

Roots Real and Equal 
The value of 

2

0

2    is the critically damped condition, which is essentially a 

borderline condition where the system is just about going to oscillate, but not quite (a 

critically damped-condition). By substitution one finds that ktAte is also solution, thus the 

combined solution is, 
t

L eAtAi  )( 21
       (4.31) 

Roots real and equal should not be a design consideration as it creates a very unstable 

circuit. It is only a mathematical probability that the parameters are exactly equal, but it 

has no engineering significance. The constant A1 and A2 of the Equation 4.31 are 

evaluated for the initial conditions of I0 and V0 as follows, 

 20 AI   t=0 

ttL eAtAeA
L

V

dt

di     )()( 211

0  

01

0 IA
L

V
   t=0 

02

0

0

1

IA

I
L

V
A



 
 

For the parallel RLC circuit the current on the inductor iL is defined as, 
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t

C

t

CL eIteI
L

V
i    )( 0       (4.32) 

For the series RLC circuit Ic = 0 and the current is defined as  

t

L te
L

V
i  )( 0         (4.33) 

The output iL of Equation 4.32 for the parallel RLC circuit is shown in Figure 4.16 as a 

function of time for the following component values, 

 2R  FC 1  HL 1  VV 10  ampI 1  

 
 

  **** Insert Figure 4.16 here ****  

Figure 4.16. The output current as a function of time for a parallel circuit critically 

damped. 

 The output iL for series RLC circuit of Equation 4.33 is shown in Figure 4.17 as a 

function of time for the following component values, 

 2R  FC 1  HL 1  VV 10  ampI 1  
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  **** Insert Figure 4.17 here ****  

Figure 4.17. The output current as a function of time for a series critical damped circuit. 

 

 

Roots Complex 
 

If 22

o   then the square root becomes a complex number, requiring interchanging the 

terms 2

o  and 2 by multiplying the root with the operator 1j . The two exponents 

give us the following solution, 

)()(
)(

2

)(

1

2222 tjttjt

L
oo eeAeeAi
    

 

This is the under-damped condition indicating two complex frequency of oscillation 
22   oj , one rotating in a clockwise direction and the other counter clockwise (see 

the Figure 2.1 describing two complex conjugate waves). The new wavelength is less 

then the original frequency 0 by a factor of . With each frequency, there is an 

exponential decay multiplier )(1

teA  and )(2

teA  . The system will respond with a 

sinusoid that will soon die down with an exponential decay rate of te  . 

 

Using the identity )sin()cos( tjte tj   and substituting the value of A1 and A2 as 

described in the Equation 4.28 for the parallel RLC circuit, we get the following result 

describing the current on the inductor as a function of time, 

  

 )sin(cossin 0

0 tteIte
L

V
i d

d

d

tt

d

L 







      (4.34) 
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The Figure 4.18 is the plot of the current as a function of time for the following circuit 

component for the parallel RLC circuit of Figure 4.13. 

 2R  FC 05.0  HL 1  VV 10   

 
 **** Insert Figure 4.18 here ****  

Figure 4.18. The plot of Equation 4.34, indicating the response of an under-damped 

parallel RLC circuit. 

 

 

For the series RLC circuit the initial current I0=0, and the Equation 4.34 is reduced as 

follows, 

 te
L

V
i t

d

L 


 sin0         (4.35) 

The Figure 4.19 is the plot of the current as a function of time for the following circuit 

component for the series RLC circuit of Figure 4.12. 

 2R  FC 1  HL 05.0  VV 10   
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**** Insert Figure 4.19 here ****  

Figure 4.18. The plot of Equation 4.34, indicating the response of an under-damped series 

RLC circuit. 

 

Forced Excitations 
 

The natural response being discussed in the previous section was obtained for the zero 

input condition since the input force was removed after the time t > = 0. Now we 

consider the zero state condition where an input force is applied after the time t >= 0. We 

begin with the discussion of the step and impulse response and then derive the response 

to an arbitrary input using the Convolution process as we did with the first order 

differential equations.  

 

 

Step Response 
A constant current I of a unit magnitude applied to an RLC network as shown in Figure 

4.13 may be considered a step input u(t). The response to such an excitation should be 

considered independently for the three conditions namely; roots complex ( 22

o  ) the 

under-damped condition, roots real ( 22   ) the over-damped and roots equal 

( 22

o  ) the critically damped condition. The following analysis use the parallel RLC 

network as shown in the Figure 4.13  

 

Applying the Kirchoff’s Current Law to the circuit of Figure 4.13 for the unit step 

function u(t), 
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)(2 02

2

tui
dt

di

dt

id
L

LL  
      (4.36) 

The particular solution is obtained from the new input condition of the constant current 

and we get the following solution 

 1)( tiP   0t       (4.37) 

The general solution is obtained for the three damped conditions of roots real, roots 

complex and roots equal by adding the homogenous solution to the particular solution 

 )()()( tititi PH   

Roots real 

 

We get the following general solution by combining the homogenous solution of 

Equation 4.25 and the particular solution of Equation 4.37. 
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In order to resolve the coefficients A1 and A2 we need two independent equations, that we 

can obtain using the following initial conditions 
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The step response is therefore, 
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The coefficients s1 and s2 are real for the roots real condition, 
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For the parallel RLC network, 
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The Figure 4.20 is a plot of the Equation 4.38 for the following circuit components of the 

Figure 4.13. 
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**** Insert Figure 4.20 here ****  

Figure 4.3. The inductive current of the parallel RLC circuit in response to a unit step 

input. 

 

Roots complex 

The under-damped condition follows the same pattern as that of Equation 4.38, except; 

now the constant s1 and s2 are complex conjugate numbers, since 22  o , At this point 

we will introduce the phasor equivalent of the complex number s1 and s2 to simplify the 

multiplication operation, 
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The polar representation of s1 is defined as, 
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Substituting the complex values of s1 and s2 into Equation 4.38 we get the following 

simplified term 
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The graph in Figure 4.21 shows the under-damped frequency response to the unit step 

function of Equation 4.39, for the following circuit components. 

 2R  FC 1  HL 1  VV 10   
It should be noticed that the exponentially decaying sinusoid reaches the value of 1 as 

time progresses.  

 

 
  **** Inser Figure 4.21 here ****  

Figure 4.21 The step response of complex roots 

 

Complex plane 
The complex number representation of the coefficients s1 and s2 can best be described as 

a vector on a rectangular coordinate system. The x-axis is the damping factor and the y 

–axis is the damped frequency d , while 0 is the vector magnitude. Notice the damping 

factor  is always on the negative side of the quadrant for positive resistor values. This is 

the case with physical components in RLC circuits. (The concept of negative resistance 

appears in some networks with feedback amplifiers that act like negative resistors, this is 

beyond the scope of our analysis.) The Figure 4.22 describes the rotation of such a vector 

on the complex plane with the magnitude 0 and the angle of rotation 



 d1tan  .  
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  **** Insert Figure 4.22 here ****  

 Figure 4.3. The vector representation of the complex frequency s1 

 

Quality factor 

The relationship between the damped frequency d and the exponential damping factor   

is obvious from the definition 
22   od . The decrease in d  is in proportion to 

increase in  . The ratio 




2

0 can be described as a quality factor in a system with second 

order differential equation, such as the one being described in the series and parallel RLC 

circuit of Figure 4.12 and Figure 4.13. In order to decrease damping we must decrease  , 

a zero damping is an infinite Q, and that is the case for a true resonant circuit.  

 

For a series RLC circuit the Quality factor Q is defined as, 
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And for a parallel circuit, 
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 A damped resonant circuit can be described on the basis of the Quality factor Q as 

shown in the Figure 4.23. A 
2

1Q  is an over-damped, 
2

1Q  is the critical-damped, 

and 
2

1Q  is the under-damped and Q  is a true resonant circuit with no loss of 

energy. 
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  **** Insert Figure 4.23 here ****  

Figure 4.23. The Quality factor representation of the complex number vector 
22   od  on a rectangular coordinate system 

 

 

Unit Impulse Response 
Finding the response to an impulse function is simply a matter of determining the energy 

stored during a short impulse, as defined in the previous section of the first order 

differential Equations. In order to determine the initial conditions, first, we would analyze 

the affect of the impulse on the capacitor voltage. We know the area under the impulse; it 

is equal to 1 by definition. The charge injected due to an impulse, will all be consumed 

by the capacitor, in order to build-up a voltage across the terminals. 
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The same voltage will appear across the inductor as the rate of change of the current i, 
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The particular solution is given as  

 Pi  at 0t  

The homogenous solution is given as 
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The complete solution is the homogenous solution plus the particular solution 
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For all practical purpose the function 0 at time 0t making the particular solution 
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We solve simultaneous equations to obtain the coefficients A1 and A2, 
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The current across the inductor for the under-damped case is therefore, 
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The Equation 4.41 must be multiplied with the unit step function u(t) in order for it to be 

valid for all time t, which merely indicates that at time t < 0 the function is 0. 
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The Figure 4.24 is the graph of the impulse response. Notice the similarities between 

natural response and the impulse response. 

 
 

 
 

 
**** Insert Figure 4.24 here ****  

Figure 4.24 The impulse response of the second order differential equation for the 

Equation 4.42. 
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Scaled Impulse Response 
The response given in the Equation 4.42 is for the unit impulse function whose area under 

the curve is equal to 1. Any other impulse which is a fraction  of the unit impulse will 

produce the scaled response accordingly as defined in the Equation 4.43, 
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Response to an arbitrary input  
The convolution process discussed in the previous section of the first order differential 

equation is also applicable to the second order system. The impulse response convolved 

with subsequent input to the system is the response to an arbitrary input. The input signal 

is treated as a series of delayed pulses as shown in the Figure 4.9 and the output is 

obtained by time-delayed addition of individual responses.  

 

If )( ktth  is the delayed impulse response and )( ks ti  is the current input then the output 

is computed as the following Convolution integral 
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We will be using the Convolution method later on when we develop the algorithm to 

realize the digital filters. 

 

Summary 
 

In this chapter we discussed the input and output relationship of systems such as 

electrical circuits that are governed by differential equations. We established Convolution 

as a method of solving the equations and the discrete time Convolution was discussed as 

a possible solution where a computer may be used for processing the input and output. 

We analyzed the series and parallel electrical networks for their varying response by 

solving the corresponding differential equation. The goal in this chapter was to discuss 

the method of Convolution as a solution of differential equation (it would form the basis 

of our filter design in the coming chapters) and to see the expected response of systems 

that are governed by differential equations. 


