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Chapter 3 Fourier Transform 
 

 

In this chapter 

 
 Periodic function as a complex number function 

 

 Fourier Transform 

 

 FFT algorithm 
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Introduction 
 

We discussed in Chapter 1 the basics of Fourier analysis and established a mathematical 

way of describing an arbitrary function by using its frequency components. The hidden 

message was that an event could be considered as cyclic in nature composed of sinusoidal 

frequencies, the fundamental and its integral multiples called harmonics. We have found 

complex numbers as the best way to represent a cyclic function and developed the rules 

to perform mathematical operations using the Gaussian operator 1 . We found that 

sinusoidal function can be described as complex exponent function by using Euler’s 

identity.  

 

In this chapter we will discuss the transformation of a function from time domain to 

frequency domain, the culmination of Fourier series into Fourier Transform. The 

frequency domain gives us another dimension of analyzing events that are extremely 

difficult in time domain or sometimes not even possible. We presented an example in 

chapter one where a mysterious output was observed when the input was a periodic 

function, but with the help of Fourier analysis, the problem was quickly identified. We 

did not include time in our analysis, and you will see that time is irrelevant when we 

know that the basic periodic function does not change its shape or form as time goes by.   

 

The aim is to develop software algorithms to achieve the result of the theoretical 

formulation. But for that we need to modify the Fourier formula in a manner that is 

suitable for digital computer implementation. 

 

We begin with simplifying our long Fourier series representation of a function into its 

compact notation of the Euler’s exponent form and then deriving an expression that only 

retains the frequency information to give us a frequency domain equivalent of a time 

domain function. The mathematical derivative is presented to give a perspective of 

equivalency and show some facts of the time domain properties that are hidden in the 

frequency domain. 

 

 

Periodic function as a complex number function 
 

We have already seen that the complex exponent function as determined by Euler is a 

composition of sin and cosine function. 
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A periodic function f (t) in time is a function of arbitrary amplitude, but has a well-

defined period. You can think of any function as periodic as long as you assume that the 

period is infinite. If you believe a function is not periodic, it may only means that you 

have not waited long enough to find its period. We have seen how to extract the 

component frequencies in the previous chapter of Fourier analysis, the long and arduous 

summation of sin and cosine functions and the DC constant. Next, we’ll see how to 

reduce this long series into a compact exponent notation using Euler’s identity. The 

sample time Fourier series is presented again as a refresher in Equation 3.1. 
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Where 0f is the fundamental frequency and 0nf  are the harmonics. 

 

 

The continuous time equivalent of the discrete time function is 
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Where the coefficients are,  
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Replacing the sin and cosine functions of Equation 3.1 with its equivalent exponent 

notation and replacing j1 with j , we get,  

 

tjn

n

tjn

n

n

tjnnntjn

n

nn

tjntjn

n

ntjntjn

n

n

eBeAa

e
bja

e
bja

a

ee
b

ee
ja

a

tf

00

00

0000

)()(

)
2

()
2

(

)(
2

)(
2

)(

1

0

1

0

11

0














































 (3.2) 

 

2
,

2

nn
n

nn
n

jab
B

jab
A





  

Similar substitution could be made for the Fourier coefficients and the coefficients can be 

described using the exponent form, 
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           (3.4) 

 
The remaining constant a0 can also be defined in terms of exponent as shown below 
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We can merge the coefficients
0A into

nA since for n=0 the two exponents are same and 

simplify the Fourier series some more as shown in Equation 3.6. 
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We could modify the second summation of the Equation 3.6 so that both summation 

combined would covers the entire spectrum of n to n , but for that we need to 

redefine the nB for negative values of n only as follows, 
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Comparing the Equation 3.7 and 3.4 we see the two coefficients are equal now, we will 

give our new coefficient a new name and call it Fourier Coefficient )(nX  as we have 

successfully managed to combine the three coefficients of a0, an and bn into a single form 
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Combining the two summation for the entire range of the values for n to n we 

can describe the Fourier series equivalent of the original function into the complex 

exponent form as 
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Where the exponent function is the Euler’s identity, 
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With the similar analogy we could derive the discrete version of the Fourier coefficient 

called Discrete Fourir Transform into its condensed form  
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From the Discreter Fourier Transform we could bring back the sampled function as 

follows 
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You may say that now there is a certain amount of elegance in the representation 

of the Fourier series in Equation 3.11 and 3.9, that we have taken a long series 

and reduced it to a compact looking function. But we certainly could not use this 

formula for actual calculations. We need the coefficients an and bn and for that we 

still have to go through the same computational process that we did with the long 

series. Hidden in the coefficient of )(nX are a0 , an and bn and the tjne  hides the 

)sin()cos( tntn  

 

functions. Still, the Equation 3.11 expresses the relationship 

between an input and output.  

 

 

Removing the periodic dependency 
 

One drawback in all Fourier analysis is that it is being assumed that the complex 

wave has a predefined period. The formula requires you to have data for at least 

one complete cycle and expects the behavior to be repeated. But who knows what 

the wave looked like before and what will it look after ward or is it really a 

periodic wave per se? After all, nature is too complex to have a repeated pattern. 

And what are the consequences of taking few samples and basing a judgment on 

the entire function? To answer these questions we really need a formula that does 

not depend upon the function being a periodic wave and this is what Fourier 

Transform is all about, it is based upon the following principle, a sample from a 

lot tells you something about a lot and more samples from the lot tells you more 

about the lot, so let’s modify the Euler’s formula and remove the periodic 

dependency and see the consequences of it on the original function.  

 

Euler’s equation and non-periodic wave 

 

The Fourier series in its original form is not very practical as is.  It requires 

tremendous amount of calculations and it assumes that the input function is 

periodic in nature. The Euler’s formula or the complex number representation of 

the Fourier series of Equation 3.11 has hidden the conditionality of wave being 

periodic in its coefficient )(nX , but now we have a dilemma. We cannot bring 

back the original function, as it does not give us the actual coefficient a0 , an and 

bn that we need. In this section we will discover the method that will modify the 

Euler’s formula and enables us to deal with any kind of wave, periodic or non-

periodic. 

 

To begin our discussion let’s assume all functions are periodic in nature. Well, 

what if we assume every function has a period and its value is infinite, can’t argue 

with that. You would not live long enough to prove otherwise. But according to 
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Fourier series, to get complete spectrum of the frequencies in a function we need 

to observe the function for one complete cycle. Does it mean the job can never be 

completed? Having a period that approaches infinity has other problems too. It 

would make the fundamental harmonics near 0 as shown in the Equation 3.12. 

 

0
11





T
f       (3.12) 

The more sample you take in one-second duration the more you expand your 

frequency spectrum. Every sample contributes to some degree towards the whole 

even a single sample, and brings you closer in defining the frequency components 

of the original function whose period is now assumed to be infinite.  

 

  

Fourier Transform 
 

The argument presented in the previous section leads us to one conclusion that the 

factor 
T

1
 must be removed from our calculations in order for the Euler’s formula 

to have any practical value. If the wave takes infinite time to advance through one 

period then its frequency approaches 0. What happens to the spectrum of the 

frequency, as the wave passes through only the smallest fraction of its period in 

one second? The spectrum shows only the integral multiple of the fundamental 

frequency, so as the frequency approaches 0, the interval between frequencies on 

the spectrum grows narrower and narrower. Eventually as the period approaches 

infinity the spectrum becomes continuum and all frequencies are known and there 

is no gap between the frequencies. Since, now every sample is considered a 

contributing factor towards the frequency component and the number of samples 

is related to the number of frequencies in our spectrum, it is no longer a time 

domain any more. The domain is our frequency spectrum and the rate of sampling 

is f instead of t . 

T
f

1
  

 

The graph of Figure 3.1.a, b and c shows how rate of sampling affects the 

frequency spectrum. The gap between frequency f approaches 0 as the number 

of samples in one-second approaches infinity. 
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**** Insert Figure 3.1.a here **** 

Figure 3.1.a. Frequency spectrum with 12 samples/sec 

Amplitude
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**** Insert Figure 3.1.b here **** 

Figure 3.1.b. Frequency spectrum 

with 20 samples/sec 

 

 

 

**** Insert Figure 3.1.c here **** 
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Figure 3.1.c. Frequency spectrum with 50 samples/sec 

 

Having realized that frequency a continuum function, the fundamental and the 

harmonics 0nf are simply a continuous frequency variable f with no gaps among 

them. Let’s rewrite the Equation 3.10 by shifting the summation halfway negative 

and replacing 
T

1
 with df  (as T ) and n with fn 2 , )(nX with )(X . We 

would also like to use the term g(t) instead of (t), as  is being used for 

frequency. 
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Where g(t) is from Equation 3.9, 
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We have also switched to dt instead of T  in Equation 3.13, since our period T is 

infinite so a small portion of t is equal to a small portion of T.  

 

 

Replacing the value of )(X  in Equation 3.14 with the Equation 3.13. 
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The sticky point in the Equation 3.15 is the multiplying factor df , which is very 

close to 0, so we will move it out 
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All we have done in Equation 3.16 is taken the Equation 3.15 and moved the 

quantity df to the end. We have also replaced the quantity
2

T
with  , since T is 

infinite so 
2

T
 is also infinite. 

 

The term in the bracket of Equation 3.16 is our Fourier Transform. It has the 

desired property that it does not depend upon information regarding the period. It 

may be confusing to see that we still have to do the summation all the way up to 

infinity, but wait till next section and we will have an explanation. 

 

We give the term in the bracket a new name )(X for our Fourier Transform. 
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And to bring back our original function we have Inverse Fourier Transform by 

substituting the value )( fG back in Equation 3.16. 
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But just what does Fourier Transform of Equation 3.17 represent? It is not the 

actual frequency component. The actual frequency component is our )(nX . Let’s 

compare the two. 
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The two quantities are very much alike. But the )(nX is the true area divided by 

the length as given by the term 
T

1
, whereas )(X is a relative term. It may not 

show the actual frequency but it is unique for every frequency in the function. 

And this is good enough for our analysis. 
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We can take a complex wave and identify its component objects with Fourier 

Transform of Equation of 3.17 (we can not call them frequencies as explained 

above) and with Inverse Fourier Transform the same component objects 

combined return our original function as in Equation 3.18. 

 

The Fourier Transform gives us a comparative analysis of component frequencies 

whereas Fourier series give us the true analysis of component frequencies. The 

Fourier series has Fourier coefficients to get back to the original function and in 

Fourier Transform the transform itself is being used to bring back the original 

function. 

 

We have Fourier series in an acceptable form in Equation 3.19 in the form of 

Fourier Transform. The integral in 3.19 is an improper integral since the domain 

of integration is an unbound interval. The convergence or divergence of the 

integral depends entirely on the function )(tg , since the magnitude of the term 
ftje 2 never exceeds 1. 

 

1))2(sin)2((cos)2sin()2cos( 22)2  ftftftjfte ftj 
 

 

 

The Fourier Transform of a function shows us the component frequencies present 

in any function, but how close we get in approximating the true contents of a 

function is a topic of discussion next. 

 

You will see the benefit of Fourier Transform from Digital Signal Processing 

point of view later in the section but a little bit more rigor in mathematics is 

presented next to show you a brilliant conclusion of Fourier Transform the 

Heisenberg Uncertainty Principal. 

 

 

The difference between a true function and the estimation with the 

Fourier Transform 
 

Let’s analyze the result for a moment if we have a wave that has an infinite period 

and find the Fourier Transform of it. The function g(t) =1 is one example that 

does not oscillate. It goes from –ve to +ve infinity without touching the ground. It 

has only one frequency f = 0.  
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

0

 
 

**** Insert Figure 3.2 here **** 

Fig .3.2 A function with a constant value of 1. 

If we apply the Fourier Transform and analyze the spectrum it should look like 

the frequency graph of Figure 3.3.  

 0
frequency  

 

  **** Insert Figure 3.3 here **** 

Fig. 3.3 Frequency spectrum of an ideal function with a constant value 

 

It would be next to impossible to integrate this function over a period as the 

period stretches all the way up to infinity, so we take a finite time period of T 

and try to integrate the function. We have to assume that beyond T everywhere 

the function is 0. 

 

The Examples 3.1 and 3.2 will elaborate the effect of limiting our samples while 

measuring an event. 

 

Example 3.1 

 

Consider a function whose value is equal to a constant c inside a domain –t and t. 

The value is 0 outside the domain, a) find the Fourier Transform of the function, 

b) find the Fourier Transform of an impulse function with unit height, and a 

domain approaching 0. 
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**** Insert Figure 3.4 here **** 

Figure 3.4 Function for example 3.1 
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According to Equation 3.19 
t

t

ftjt

tt

ftj

fj

e
dtecX



















  






2
)(

2
2

   

          (3.19) 

 

f

ft
c

j

ee

f

c
X

ftjftj








 )sin(

2
)(

22








 




    (3.20) 

 

 

 

 

b) 

 

The unit impulse function is similar to the function being defined in Example 3.1 

and shown in figure 3.5. Substituting the value of c=1 and a small duration in 

Equation 3.20 we get the following transformation. 

 

2

2

)
2

sin(

2

1
)(

2
2

2
2

t

t
f

t
f

j

ee

f
X

dt
fj

t
fj








































 

 



 15 

)
2

sin()
2

sin(


 
t

f

 
For a very small angle   
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(The unit impulse function commonly known as Dirac delta function will be 

used in extracting a specific term of a sequence when we discuss convolution 

operation later on in next chapter.) 
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dt

t
 

 

 **** Insert Figure 3.5 here **** 

 Figure 3.5 Unit impulse function 

 

 

 

Example 3.2: 

 

Plot the frequency graph of Fourier Transform of Fig 3.1, a) for t = 0.2, b) for 

t=2, c) for t=4 seconds. The amplitude is being determined as 1 in all three cases. 

 

a) 

Plugging the value 2.0,1  tc  in the Equation 3.2, Figure 3.1 showing the plot 

of the function 
f

f
fG



 )2.0sin(
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 **** Insert Figure 3.6.a here *** 

Figure 3.5 a. Graph of the function 
f
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b) 
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Plugging the value 2,1  tc  in the Equation 3.2, Figure 3.1 showing the plot of 

the function 
f

f
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 **** Insert Figure 3.6.b here *** 

Figure 3.6.b. Graph of the function 
f

f
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c) 

Plugging the value 4,1  tc  in the Equation 3.2, Figure 3.1 showing the plot of 

the function 
f
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**** Insert Figure 3.6.c here *** 

Figure 3.6 c. Graph of the function 
f

f
X






)4sin(
)(   

The Example 3.1 a, b and have an interesting conclusion. The amplitude of the 

true frequency increases as we increase our period of sample. (Assuming the 

function is a constant with an infinite period and there is only one frequency with 

a value of 0 in the function, see Equation 3.12). We should be seeing only one 

component in our frequency spectrum and it should have the highest value at 0 

frequency as in Figure 3.5. But the result in Figure 3.6.a, b and c shows a trend 

towards true frequency of 0 but there are other frequencies also in our spectrum. 

In order to achieve the true result of 0 frequency, the duration of sample 

T should have been infinite. 

 

It is true in real life also, that the more we observe the better we understand. 

Every new sample brings us closer to a new reality about the function. And in 

order to achieve perfection we should keep observing forever and that is not 

possible, so we never achieve perfection. Every time we stop to consolidate our 

gain we add a little unknown in the formation of the function. Just like Fourier 
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Transform there is a little bit of uncertainty in our estimation of a true function. 

Though the uncertainty improves as the time goes by, but it remains with us till 

the end of time and the moment we stop observing, that we must, we add a little 

uncertainty and that would show in the Fourier Transform of the function. 

 

If t  is a measure of sample in time then f  could be a measure of uncertainty 

in our sample. The Fourier Transform tells us that the quantity ft  is a 

constant and in order to reduce the gap in frequencies (reduce the )f we must 

increase our time of sample t . There is a relationship of variance or the rate of 

change of sample in time and the variance in its Fourier Transform, which is 

given by Werner Heisenberg as the uncertainty principle. 
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Discrete Time Fourier Transform 
 

Now, we turn our attention to the real subject matter of implementing digital signal 

processing, by that, we mean processing of an event to suit a desired outcome by using a 

computer. In the context of digital signal processing, where a function is sampled in 

discrete time by a process control system using an A/D converter, the data can be 

described as an instantaneous summation of each individual frequency component at that 

particular instance of time. The processing involves integrating, differentiating, 

smoothing and filtering of analog signals as well as acquiring data for displaying and 

archive purpose. We only need to go through an elaborate mathematical computations 

such as Fourier Transform if there is a processing involved that requires extracting a set 

of frequencies from the input signal or transforming the input signal to a modified form 

or performing operations such as correlations. 

 

The analog world may be continuous in time but when a computer is being used to 

process a signal, there is always a finite amount of time between acquisition and 

subsequent processing, no matter how fast the computer is. The method is essentially a 

sampling of event taken at discrete time. The mathematics has to be modified slightly to 

take into account that only at specific time the discrete time coincides with the real time. 

But it does not pose much problem. We only need two subsequent samples and time 

duration between each sample to identify a particular frequency as explained by the 

Nyquist theorem of chapter 1. 

 

 

 

If t is our sampling period then the kth sample time that coincide with the real time is 

tkt  . Each discrete sample in time of a function g(t) is being placed in the perspective 
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kth position of the function and is being represented as g(k). If   is the angular velocity 

in radians per second then t  is the advancement of the wave in radians per sample. 

 

 

If N is the number of samples per second, there are N/2 frequencies in the given period 

and tN1 will be the period of the fundamental frequency. That gives us the nth 

frequency component 
tN

nf n 
 , where n =0,1,2,3,4…N/2 

 

Modifying the Fourier Transform of Equation 3.16 for discrete time events we have 

discrete time Fourier Transform in Equation 3.21.  












1

0

2

)()(
N

k

tN

n
tkj

etkgt
tN

nG


     (3.21) 

 

Since t  is our choice, we could normalize the Equation 3.21 by choosing 1t  and 

simplify the Fourier coefficient formula as, 
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The only two things you need define before the processing is the sampling rate t , and 

the number of samples N in the processing and the Equation 3.21 will compute all the 

harmonics from 0 to N/2. The following is a simple loop program to highlight the number 

of steps involved, 

 
#define N 16; 

#define DeltaT 1/16; 

Float Rsum,Jsum,freq[N/2]; 

Float Samples[N]; 

. 

. 

. 

main() 

{ 

  for (n=0;n<N/2;n++) 

  { 

Sum=0; 
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for(k=0;k<N-1;j++) 

{ 

   RSum=RSum+DeltaT*Samples[k]*cos(2.0*3.14159*k*n/N); 

    JSum=JSum+DeltaT*Samples[k]*sin(2.0*3.14159*k*n/N); 

 } 

 freq[n]=sqrt((Rsum*RSum)+JSum**JSum)); 

   } 

} 

 

It is obvious that the program is computationally intensive as is. Just to give you a 

perspective in real life the number of computations involved, let’s take an example of 

analyzing a voice spectrum on digitized data of sound pattern.  

As a first step, we need to determine the maximum frequency that needs to be extracted 

from the sampled data. The human voice can easily reach up to 4000 Hz. That means we 

need at least 8000 data point per second.  We have n=4000, N=8000 and 
8000

1t . 

 

The number of computations is 2x4000x8000 multiplications just to get the magnitude of 

the Fourier Transform, a very impractical suggestion. Fortunately there are ways to 

improve the algorithm and that is being discussed next in Fast Fourier Transform. 

 

Fast Fourier Transform 
 

Reducing the number of computations in Discrete Fourier Transform has been a dream of 

many and if you take a closer look at the algorithm of Listing 3.1, you will see that there 

are a lot of redundant calculations. It would become clear when we rewrite the Equation 

3.21 in a slightly different format, 
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     (3.22) 

The exponent term N
j

e

2


 in the Equation 3.22 is a complex number indicating a point on 

a circle. The fact that it is multiplied by nk shows the point is being rotated around the 

circle nk times. The –j only signifies that the rotation in clockwise direction. Let’s assume 

that you are computing Fourier Transform of 8 samples, N = 8, hence the number of 

frequencies n=4 and you step through each frequency k=0 through 7 times. That means 

the complex point is rotated nk=32 times around the circle. But after the first 8 rotations 

the point simply moves around the circle and repeat its pattern as shown in Figure 3.7. 
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 **** Insert Figure 3.7 here **** 

 Figure 3.6 A point N
j

e

2


moves around the circle when multiplied by nk.  

 

For every new wave n=0,1,2,3 the multiplication steps are repeated for k=0,1,2,3,4,5,6,7, 

but notice the point never leaves the circle. In essence 
0

4



j

e  is equal to 
8

4



j

e and 

1
4



j

e is equal to 
9

4



j

e  etc. Table 3.1 shows the actual complex number vector involved 

once redundancies are being removed. The column headings are the numerical points and 

the row headings are the frequencies. 

 

 

Table 3.1. Complex numbers to be multiplied in an 8 point DFT. 

 

 g(0) g(1) g(2) g(3) g(4) g(5) g(6) g(7) 

G(0/8) 0
4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  

G(1/8) 0
4



j

e  
1

4



j

e  
2

4



j

e  
3

4



j

e  
4

4



j

e  
5

4



j

e  
6

4



j

e  
7

4



j

e  

G(2/8) 0
4



j

e  
2

4



j

e  
4

4



j

e  
6

4



j

e  
0

4



j

e  
2

4



j

e  
4

4



j

e  
6

4



j

e  

G(3/8) 0
4



j

e  
3

4



j

e  
6

4



j

e  
1

4



j

e  
4

4



j

e  
7

4



j

e  
2

4



j

e  
5

4



j

e  

G(4/8) 0
4



j

e  
4

4



j

e  
0

4



j

e  
4

4



j

e  
0

4



j

e  
4

4



j

e  
0

4



j

e  
4

4



j

e  

G(5/8) 0
4



j

e  
5

4



j

e  
2

4



j

e  
7

4



j

e  
4

4



j

e  
1

4



j

e  
6

4



j

e  
3

4



j

e  

G(6/8) 0
4



j

e  
6

4



j

e  
4

4



j

e  
2

4



j

e  
0

4



j

e  
6

4



j

e  
4

4



j

e  
2

4



j

e  

G(7/8) 0
4



j

e  
7

4



j

e  
6

4



j

e  
5

4



j

e  
4

4



j

e  
03

4



j

e  
2

4



j

e  
1

4



j

e  
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Look carefully in the Table 3.1 and you will see that every even point has a top and 

bottom half that are identical. It means we only need to compute the top half and use the 

computations for the bottom half. This is one big savings in multiplication operation. 

Now there is a different set of rule, if k=0,1,2,3,4,5,6,7 then 2k are the even points 0,2,4,6 

and 2k+1 are the odd points 1,3,5,7. 

 

We can rewrite the Equation 3.22 to reflect the new set of operations as shown in 

Equation 3.23. 
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          (3.23) 

 

Let’s split the group into odd and even operations and rearrange the table to reflect the 

new set of computations as shown in Table 3.2. 

 

Table 3.2. Complex numbers to be multiplied in an 8 point DFT with blank entries 

indicating redundant operations.. 

  

 g(0) g(2) g(4) g(6) g(1) g(3) g(5) g(7) 

G(0/8) 0
4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  

G(1/8) 0
4



j

e  
2

4



j

e  
4

4



j

e  
6

4



j

e  
1

4



j

e  
3

4



j

e  
5

4



j

e  
7

4



j

e  

G(2/8) 0
4



j

e  
4

4



j

e  
0

4



j

e  
4

4



j

e  
2

4



j

e  
6

4



j

e  
2

4



j

e  
6

4



j

e  

G(3/8) 0
4



j

e  
6

4



j

e  
4

4



j

e  
2

4



j

e  
3

4



j

e  
1

4



j

e  
7

4



j

e  
5

4



j

e  

G(4/8)     4
4



j

e  
4

4



j

e  
4

4



j

e  
4

4



j

e  

G(5/8)     5
4



j

e  
7

4



j

e  
1

4



j

e  
3

4



j

e  

G(6/8)     6
4



j

e  
2

4



j

e  
6

4



j

e  
2

4



j

e  

G(7/8)     7
4



j

e  
5

4



j

e  
03

4



j

e  
1

4



j

e  

 

 

We have one more trick of mathematics that we can apply on Equation 3.23. The odd 

complex number multiplier (2k+1) can be converted into an even complex number by 

separating the exponent as follows, 
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     (3.24) 

What we have done essentially is rotated the vector that makes the point fall on to the 

next even location. The operation will become clear when we discuss the vector rotation 

in the next section, but for now just see the advantage of converting an odd complex 

number operation into an even complex number operation. We can apply the same divide 
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and conquer rule that we did in the first part of Table 3.2 where even numbers top and 

bottom halves became identical. 

 

The new equation is 
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If we expand the operation on the right hand side of the equation into a table as we did in 

for the original computation in Table 3.2, we will see the same repeated pattern emerging 

in tabulation. No entries are made in the bottom half of the Table 3.3 since the bottom 

half is identical to the top half. But don’t forget that at the end of all multiplication and 

summation we need to perform one last operation of multiplication with 
n

N
j

e



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k=0,1,2,3  

n=0,1,2,3,4,5,6,7 

 

Table 3.3. The complex number multiplier in odd points calculations 

 

 g(1) g(3) g(5) g(7) 

G(0/8) 0
4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  

G(1/8) 0
4



j

e  
2

4



j

e  
4

4



j

e  
6

4



j

e  

G(2/8) 0
4



j

e  
4

4



j

e  
0

4



j

e  
4

4



j

e  

G(3/8) 0
4



j

e  
6

4



j

e  
4

4



j

e  
2

4



j

e  

 

 

Let’s divide and conquer some more, since we are doing so well. Look at every alternate 

point in the Table 3.3. The top two and the bottom two are same now just like in the 

Table 3.1. We can eliminate the redundant calculations and reduce computations some 

more as in Table 3.4. 

 

Table 3.4. The complex number multiplier in odd points calculations, blank entries 

indicating redundant operation 

 

 g(1) G(5) g(3) g(7) 

G(0/8) 0
4



j

e  
0

4



j

e  
0

4



j

e  
0

4



j

e  

G(1/8) 0
4



j

e  
4

4



j

e  
2

4



j

e  
6

4



j

e  

G(2/8)   4
4



j

e  
4

4



j

e  
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G(3/8)   6
4



j

e  
2

4



j

e  

 

 

 

 

We keep doing rotation and eliminate the redundant computations until we have only one 

point left. 

Let’s make some simple substitutions to make the expressions little cleaner and remove 

the redundancies while expanding the Fourier Transform computations as shown in 

Equation 3.25. 

 

)()12(

)()2(

kqkg

kpkg




 

We N
j






 

 

}})({})({{)(

1
2

0

)2(

1
2

0

)2( 










N

k

knn

N

k

kn WkqWWkpt
N

nG  

{)(  t
N

nG  

}})12({})2({

})12({})2({

1
4

0

)2(''

1
4

0

)2('

1
4

0

)2(''

1
4

0

)2('

























N

k

knn

N

k

knn

N

k

knn

N

k

kn

WkqWWkpW

WkpWWkp

    

           (3.25) 

 

Let’s see the total savings we achieve by rotating the point and eliminating the redundant 

computations, 

 

1st step) 

 4)1(),0( aa  

2
nd
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4
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Total = 24 
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The original Discrete Fourier Transform required 8 x 8 = 64 multiplications that were 

reduced to only 24 multiplications in the Fast Fourier Transform algorithms. It is a 

savings of a magnitude in time. 

 

The multiplication operation with N
nk

e



 can be explained as an operation of a vector 

rotation. 

 

Vector Rotation 
 

A complex number je is a vector in a Cartesian coordinate system with a magnitude R 

and a phase angle  . Multiplying this vector with another complex number je  is like 

rotating through an angle   as shown in Figure 3.8   





R

R

 
**** Insert Figure 3.8 here **** 

Figure 3.8. Rotation of the vector of magnitude R through an angle   

 

The X component of the vector )cos(RX  and the rotation of the X component 

through an angle   is )sin()cos(  andXX as shown in Figure 3.9.a. 



R



 
**** Insert Figure 3.9.a here **** 

Figure 3.9.a. The rotation of X component through angle   
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The Y component of the vector )sin(RY  and the rotation of the Y component through 

an angle   is )sin()cos(  andYY as shown in Figure 3.9.b. 



R

 
**** Insert Figure 3.9.b here **** 

Figure 3.9.b. The rotation of Y component through angle   

The rotated vector X and Y components are computed as, 

)sin()cos(

)sin()cos(





YXX

XYY

rot

rot


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FFT algorithm 

 

The best way to implement an FFT algorithm is to use the native code of the CPU 

instruction set, as there is an enormous amount of computation involved. But there are 

public domain software, such as FFTW (claimed to be the fastest Fourier Transform in 

the World), Scilab and Grace with built-in FFT routines that you can freely download and 

use. You will see an implementation of FFT using ‘Grace’ algorithm in Chapter 6 when 

we discuss Digital Filters. 

 

 

Summary 
 

In this chapter, we have taken the long and cumbersome Fourier series and derived a 

short and concise form using Euler’s identity. Although the coefficients of Fourier 

Transform no longer represent the amplitude of true sine and cosine functions, but from 

practical point of it is sufficient to use them as relative magnitude of frequencies. We also 

developed the method Fast Fourier Transform that simplifies the number of computations 

in Fourier Transform calculations. 

 

The Fourier series in Chapter 1 gave us the amplitude of the component frequencies that 

were supposed to be infinite in numbers to be a true representative of a function, but the 

frequencies were discrete integral multiple of fundamental frequency, we have 

corresponding Discrete Fourier Transform when we use number of samples as oppose to 

time as the independent variable. The Fourier Transform on the other hand gave us 

frequencies that were continuous with no gap among them and we have Discrete Time 

Fourier Transform when we use sampling frequency as the independent variable as 

shown in the Table 3.5.  



 28 

 

 

Time Duration 

Finite Infinite  

Fourier Series 

(FS) 



 


,....,

)(
1

)(
0

k

dtetx
T

kX

T

tj k

 

Fourier Transform 

(FT) 

),(

)()(



 








  dtetxX tj

 

Continuous 

time t 

Discrete Fourier Transform 

 (DFT) 

 

1,....,1,0

)()(
1

0










Nk

enxkX
N

n

nj k

 

Discrete Time Fourier 

Transform 

(DTFT) 

),(

)()(



 



 






n

njenxX

 

 

Discrete 

time t 

Discrete frequencies,  Continuous frequencies,   

   

 

 


