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Chapter 2 Complex number arithmetic 

 

In this chapter 
 

 Complex number representation 

 Complex numbers in polar coordinates 

 Exponent e and the power functions 

 The phasor method 
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Introduction 
 

We established the fact in the previous chapter of Fourier analysis that an arbitrary 

function could be described using its constituent frequencies in terms of sin and cos 

functions. The mathematics of the sinusoid was developed using an analogy as if it was a 

spot on a bicycle wheel moving in time. We could also consider the amplitude as if it was 

a point on a circle. We needed two numbers to describe the point, in a Cartesian 

coordinate system the point P(x, y) is the distance in the x-direction and the distance in 

the y-direction, while in Polar coordinate system it was )cos(nr and )sin(nr . But 

despite the fact that they were real numbers, we could not perform normal algebraic 

operations of additions and multiplications upon them. Point (x, y) in essence is a single 

number and is treated as one entity. One obvious reason of not being able to perform 

arithmetic is that the algebra does not allow us to have a comma in parenthesis, so 

mathematician had to invent a different numbering system, just like they did for the 

negative numbers, real numbers, logarithmic numbers, and for representing points in a 

coordinate system they invented complex numbers. 

 

In this chapter, you would see how the new numbering system of complex numbers 

allows us to apply algebraic rules when such numbers are placed in algebraic equations. 

We would develop the mathematical foundation and establish the rules of arithmetic 

operations involving the complex numbers that would not only help us analyze the 

problems in electrical circuits (the same electrical circuits that we intend to simulate 

using digital signal processing), but also lay down the foundations for solving a broad 

range of problems that the digital signal processing is intended to solve. We intend to 

perform filtering of frequencies, besides integration, differentiation and smoothing of 

sampled data obtained form the analog world. 

  

Complex number representation 
 

If you know your Pythagoras theorem well you will have no difficulty in understanding 

the complex number arithmetic. As mentioned before, a complex number is nothing but a 

point on a coordinate system made up of two numbers, essentially, the relative magnitude 

of the distance in x and y direction from the origin, whereas the absolute distance is 

computed as the square root of the x squared and the y squared, (according to the 

Pythagoras theorem of the right angle triangle). 
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*** Insert Figure 2.1 here *** 
Figure 2.1. Points in Cartesian coordinate system 

 

 

 

Suppose you have two points P1 (1,3) and P2 (3,2) and you would like to add them 

together, the result is the third point P3 (4,5) as shown in the Figure 2.1.  

 

)5,4()2,3()3,1(        (2.1) 

 

The Equation 2.1 is not algebraically correct. Commas are not allowed in parenthesis, but 

then just how do you represent two numbers as distinct as x and y and be algebraically 

correct? Gauss gave the answer, (Carl Friedrich Gauss 1777-1855 Brunswick, Germany). 

He introduced the concept of an imaginary operator 1 . If you multiply the second 

number with 1  all pieces of the puzzle fall into places. Now you can treat the x and y 

components of a complex number as if they were two ordinary real numbers as shown 

below, 

 ))5(1,4())2(13())3(11(   

It is customary to show the coordinate system y-axis as the imaginary axis and x-axis as 

the real axis.  

 

The imaginary operator 1  

The Gaussian operator 1  helps us perform the vector arithmetic using simple 

algebraic rules. Multiply the y component of the complex number with 1  and all 

arithmetic operation can be carried out as ordinary algebraic quantities, as shown below,  
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The operator 1 (usually written as j or i in an equation) follows the rule of 

multiplication. 

.....1,1,1,1,1 5432  jjjjj  

 

Complex Conjugate 

 

If  jyxz   is an arbitrary complex number then jyxz   is the mirror image 

on the y-axis. The number jyxz   is the complex conjugate of jyxz   as 

shown in Figure 2.2b. 

 

The complex conjugate is usually denoted with an asterisk 

  
jyxz   

The conjugate pair of complex numbers has the following property, 

 

  )Re()()(
2

1
)(

2

1
zxjyxjyxzz   

 

  )Im()()(
2

1
)(

2

1
zjjyjyxjyxzz   

 

 

 

The magnitude of the complex number is obtained by multiplying it with its 

complex conjugate,  

 

  )()()( 22 yxjyxjyxzz   

 

Thus, 

 

 5)3()4()34()34(34 22  jjj  

 

 

 

 

 

To add the two points (3+2j) and (4+5j) add the real values and the imaginary values 

separately. The result is a new complex number shown graphically in the Figure 2.2 

 

 jjj 77)54()23(   
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*** Insert Figure 2.2a here *** 
Figure 2.2a. The addition of vectors 

 
4+3j

jy

x

4-3j 
 

*** Insert Figure 2.2b here *** 
Figure 2.2b. The addition of vectors 

 

 

Multiplying a real value with j produces an imaginary number and multiplying an 

imaginary number with j results in a real value but in the negative direction. For 

example, multiply the real value 5 with j produces j5 which is on imaginary axis, 

subsequent multiplication of   j5 with j results in –5 which is on real axis in the 

negative direction, another multiply of j with –5 produces –j5 which is on 

negative imaginary axis, subsequent multiply of –j5 with j results back to the real 

value 5. Figure 2.3 shows how the repeated multiplication with j rotates the 

number in a counterclockwise direction. Similarly, multiplication with –j results 

in a clockwise rotation of 90
o
 on the complex plane. 
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*** Insert Figure 2.3 here *** 
 

Figure 2.3. Multiplying with j rotates the vector to 90
o
 counter clockwise 

 

 

A complex plane is a Cartesian coordinate system where the distance along the vertical 

axis is measured in units of )1( jj , and those along the horizontal axis in the usual 

units of 1 as shown in Figure 2.4. The y-axis is the imaginary axis and x-axis is the real 

axis. 
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*** Insert Figure 2.4 here *** 
Figure 2.4. Plot showing imaginary axis and real axis. 
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Complex numbers in polar coordinates 
 

The position of the complex numbers in Cartesian coordinates determines the 

distance in x and y directions. Sometimes it is useful to represent the complex 

number in polar coordinates, where the complex number is represented as a 

directed line OP, (a vector of length M) rotated from the initial line OA through 

an angle  . The Figure 2.5 shows a complex number of magnitude vector M at 

angle  . 

 

  MP  
 

 

 

 
 

*** Insert Figure 2.5 here *** 
Figure 2.5. Vector in polar coordinate system 

 

To convert complex numbers in polar coordinates to rectangular form, 
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We can convert the values from the Cartesian coordinates to the Polar coordinates using 

the trigonometric rule; 
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The Polar form of the complex number is, 

 

))sin()(cos( xjxrp   
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If the point is on a unit radius circle (taking r as a unit magnitude) we can write the 

number as, 

))sin()(cos( xjxp   

While performing addition and subtraction of complex numbers is easier in 

rectangular coordinates, there is a definite advantage in doing multiplication and 

division in Polar coordinates. The rules are simple, for multiplication, multiply the 

magnitude and add the angles and for division, divide the magnitude and subtract 

the angles, as shown below, 

 

If )sin(cos 1111  jrz   and )sin(cos 2222  jrz   

 

Then, 

 

 

 )sin()cos( 21212121   jrrzz  
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The multiplication and division can also be performed symbolically, 
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The angle   also referred as the phase angle indicates the rotation of the magnitude 

vector M from the real axis as shown in Figure 2.5. 

 

Exponent e and the power functions 
 

One of the most useful ways of representing a complex number is the exponent 

notation. We would be expressing our wave functions using exponents and the 

complex numbers in exponent form. There will be an extensive use of exponent 

function in our study of signal analysis, specially, the Fourier Transform, so it is 

important to grasp the concept of the exponent functions, the following 
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explanation might help bring a picture in mind when you derive a function using 

exponents. 

 

A product is the result of multiplying two or more quantities; if the quantities are similar 

then the result is a power function, in which case a variable is raised to a constant power, 

such as area and volume,  

 
3

2

llllVolume
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
 

 

Another form of the power functions is where a constant is raised to a variable. For 

example, how many ways can you place two numbers in different slots? Obviously you 

need to how many slots are there, the answer is, 

 
xy 2  . Where x is the number of slots. 

 

For 2 slots the number of combination is 422 y and for 3 slots it is 823 y . This 

is also called a growth function. It is just like money in the bank. You begin with a fixed 

quantity and it would grow.  According to the power factor variable defined by your 

banker. Commonly known as the interest rate.  

 

There is a simpler method for representing a power function where the power factor of a 

base number is written as logarithmic number also written as log for brevity. You will 

find same logarithmic value for different numbering base. For example, the number 10
6
 

(1,000,000) could be written as, 

 

6)1000000(log

100000010

10

6




 

 

And the number 2
6
 (64) could be written as, 

 

6)6(log

642

2

6




 

 

Except for base 1 any number can be used for logarithmic base. It is customary to omit 

the base while representing a power number when the base is 10. Followings are the rules 

of arithmetic operations on logarithmic numbers, 
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There is a special form of growth function called exponential growth, where the growth 

is proportional to the amount present at the time. This is what you would hear from your 

stockbroker, “your money would grow exponentially!” What he really meant, his money 

will grow up exponentially and your money will grow down exponentially. Up or down 

either way the rate of change is proportional to the amount present at that instance of 

time.  

 

It is not only money there are several things in nature that follow the trend. Things decay 

and the rate of decay is proportional to the quantity present at the time, like radioactive 

materials. Things grow and the arte of growth is proportional to the quantity present at 

that time, such as build up of electric charge on a capacitor, voltage buildup on an 

inductor, population growth of living organisms etc.  

 

Mathematically speaking, an exponential function is a power function with the rate of 

change proportional to the amount present at the time. In other words, with an appropriate 

proportionality constant the exponent power function’s derivative is equal to the power 

function itself.  

 

,y
dt

dy
  

ky
dt

dy
        (2.3) 

 

Let’s follow the trail and find out what number is that, when raised to a power, gives us a 

derivative that is same as the number itself as in Equation 2.4:  

 

t
t

N
dt

Nd


)(
       (2.4) 

 

We can determine the number experimentally by examining few power function graphs. 

Let’s pick three numbers, say, 2.5, 2.718 and 3 as the number base for the power 

functions and calculate the values of their derivatives at different points. The Table 2.1 

shows the tabulation of the power functions of the three numbers and their derivatives 

and the Figure 2.6 shows how each function differs from its derivative. Comparing the 

graph of the derivative of the function and the function itself, we find only the number 

2.718 has the slope line (dashed line) identical to the power function line (solid line). No 
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other number function has such property, where the derivative is the same as the function 

itself.  

 

 

Table 2.1. The tabulation of the power functions and their derivatives. 

 

t  t)5.2(  

dt

d t)5.2(
 

t)718.2(  

dt

d t)718.2(
 

t)3(  

dt

d t)3(
 

3 15.63 14.32 20.08 20.08 27 29.66 

3.1 17.12 15.69 22.19 22.19 30.14 33.11 

3.2 18.77 17.2 24.52 24.52 33.63 36.95 

3.3 20.57 18.85 27.1 27.1 37.54 41.24 

3.4 22.54 20.66 29.95 29.95 41.9 46.03 

3.5 24.71 22.64 33.1 33.1 46.77 51.38 

3.6 27.08 24.81 36.58 36.58 52.2 57.34 

3.7 29.67 27.19 40.43 40.43 58.26 64 

3.8 32.52 29.8 44.68 44.68 65.02 71.43 

3.9 35.64 32.66 49.38 49.38 72.57 79.73 

4 39.06 35.79 54.58 54.58 81 88.99 
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*** Insert Figure 2.6a here *** 

*** Insert Figure 2.6b here *** 

*** Insert Figure 2.6c here *** 
Figure 2.6. The graph of power functions and its derivative, a) solid line indicating 

function t)5.2( and dotted line indicating function 
dt

d t)5.2(
, b) solid line indicating 

function 
t)718.2(  and dotted line indicating function 

dt

d t)718.2(
, solid line indicating 

function 
t)3( and dotted line indicating function

dt

d t)3(
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The number 2.718 also called natural number plays an important role in solving 

problems in nature involving the rate of change of quantities that follow the natural 

growth as mentioned earlier. The natural number to be more precise 2.718281828459… 

is also written as e and a function that follows exponential growth is defined as te . The 

Equation 2.4 is being rewritten using e notation substituting for N 

t
t

e
dt

ed


)(
 

 

A natural logarithm (abbreviated with ln) is a number when e is being used as a base 

for its logarithmic value. The natural log of e is 1, since 2.718 must be raised to the 

power of 1 to get 2.718 as shown below,  

 

1)718.2ln()ln(

718.21





e

e
 

Any number raised to the power 0 is equal to 1, thus the exponent of 0 is 1 and the 

natural log of 1 is 0. 

0)1ln(

10



e
 

 

There was a remarkable discovery made by Euler (1707-1783) that established a 

relationship between trigonometric functions of sin and cos and the exponent function 
jte . This discovery had greatly simplified arithmetic operation and enabled us to 

describe a complex number in exponent form. 

 

Euler’s identity 
 

Euler made an observation that the series expansion of exponent function was equal to 

the series expansion of sin function and the cos function combined as shown below, 
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We will discuss the exponent function e in depth later in the section but for now, we are 

interested in representing a complex number in the exponent notation. Using Euler’s 

identity, we can denote sin and cos functions in terms of its equivalent exponent form, 

2
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2
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sincos

j

ee

ee

je

je

jj

jj

j

j
























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Going back to our complex value representation, a vector M of fixed radial line as shown 

in the Figure 2.5 can be represented in the exponent form that would allow us to write a 

sinusoidal function using exponent notations, 

 

))sin()cos((  jMMMMeW j   

 

 

The Complex Frequencies 
 

When a complex number  js   appears in an exponential time function ste , s is 

called the complex frequency. 

 

)sin(cos)( tjteeeee ttjttjst     

 

The complex frequencies include an exponential decay factor 0  (see Figure 2.7a), or 

exponential rise factor 0 (see Figure 2.7c), multiplied with a sinusoidal function 

)sin(cos tjt   . If (if 0 ) then the complex frequencies are pure sinusoid with no 

decay or rise as shown in Figure 2.7b.   
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*** Insert Figure 2.7a here *** 

 
 

*** Insert Figure 2.7b here *** 
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*** Insert Figure 2.7c here *** 
Figure 2.7. The varying combinations of complex sinusoids, a) Exponential rise, b) No 

Exponent, c) Exponential decay 

 

 

 

 

 

 

 

 

 

 

Phase Angle 

 

If a sin function starts with an angle other than 0 then it is considered having a phase 

angle   that represents a time delay in the sinusoid.  If   is the frequency then t  is the 

angle that is formed at the particular instance of time t. If the frequency function )sin( t  

has a phase angle   then the sin function must be represented as )sin(  t . It can also 

be shown as a function of the complex point jMeW   as if the line M rotating with an 

angular velocity   as shown in Figure 2.8c. 

  

 

 
)()()()(  jtjtj MeMeMetW    

 

 

Thus, a sinusoidal function is a complex constant jMe (amplitude M  and the phase 

angle ) also known as phasor, multiplied by a function of time )( tjMe  indicating 

rotation with an angular velocity  . Electrical circuit components such as capacitors and 



 16 

inductors do not alter the frequency of the input signals; they only affect the amplitude of 

the input wave or change the phase angle of the input frequency. The quantity )( tjMe  is 

usually omitted during network response calculations, since frequency remain same. 

  

 

In terms of frequency ff 


 2,
2

    

)2()(   fjMetW  

 

The projection of the line M on the real axis is 

))cos(()()(   tMtfW real  

And on the imaginary axis 

))sin(()()(   tMtfW imag  

 

If an instantaneous voltage is described by a sinusoidal function of time such as 

 )cos()(   tVtv  

Then )(tv may be interpreted as the real part of a complex function or 

)Re()Re()( )(  jtjtj VejVeVetv    

 

The Figure 2.8a is a 3 dimensional space representation of a sinusoidal function showing 

x-axis as the real value angular frequency , the y-axis as the imaginary value of j  and 

time t in the z direction. If we look though the graph from the z direction then the 

sinusoidal function is represented as a point on a circle. A sin wave is a function 
tje  moving in a counter-clockwise direction and a cos wave is a function tje  moving in 

a clockwise direction, both having the same amplitude and the phase angle. Thus the 

periodic function is a function of complex number in continuous time, 
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Conjugate function 
 

The negative exponent jxe is also called conjugate of the positive exponent jxe . The two 

functions are mirror image of each other on a complex plane as shown in fig 2.8. 
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*** Insert Figure 2.8a here *** 
 

 
 

*** Insert Figure 2.8b here *** 
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*** Insert Figure 2.8c here *** 

 

Figure 2.8.a. The clockwise direction of the function jxe , b) The counter-clockwise 

direction of the function jxe . 

 

 

The advantage of phasor notation will be obvious in the next section as we try to analyze 

electrical networks. 

 

The phasor method 
 

The phasor method is a method of solving electrical network problems where the 

current and voltage excitations applied to the networks are all sinusoidal. Before 

we solve these problems, a brief description of behavior of the electrical 

components is given as a refresher. 

 

The electrical networks 
Most of the digital signal processing was derived from the analog world and in 

some situation we would like to replace the functionality of the electrical circuits 

using the software algorithms, so a thorough understanding is necessary. We will 

study how resistors, capacitors and inductors behave as filters of frequencies and 

integrate and differentiate the incoming signals of the analog world. During this 

study, we will assume an ideal behavior of the electrical components, where there 

is no loss of energy due to heat etc. 

 

 

Resistors 
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The voltage on a resistor is directly proportional to the current applied

 RIV rr   

Capacitors 

An electric charge builds up on the dielectric plates of a capacitor in response to 

an applied voltage. The charge is proportional to the voltage applied and the 

capacitance C is the proportionality constant.  

 Cvq   

The rate of the charge buildup (known as current) is proportional to the rate of 

change of voltage. 

dt

dv
Ci

dt

dq
      (2.5) 

For a sinusoidal excitation voltage 

 jwttj ej
dt

dv
ev   ,     (2.6) 

Substituting the value of Equation 2.6 into Equation 2.5 we get, 

 i
Cj

v


1
  

 

 

Inductors 

A rapidly changing current induces a voltage across a coil made of conductive 

material such as copper. The voltage is proportional to the rate of change of 

current and inductance L is the proportionally constant. 

dt

di
Lv       (2.7) 

For a sinusoidal current 

 jwttj ej
dt

di
ei   ,     (2.8) 

Substituting the value of Equation 2.8 into Equation 2.7 we get, 

 Lijv   

 

The Table 2.2 summarizes the relationship between the input excitation to the 

transformed output. The impedance Z is the direct proportionality constant and 

the admittance Y is the inverse proportionality constant.  

 

Table 2.2.The table showing voltage and current relationship in terms of 

impedance and admittance of the three circuit elements.  

 

Input excitation )cos(   tVv m  and )cos(   tIi m  

   Impedance  Admittance  

 Resistor RIV rr    GVI rr     

   
G

R
1

    
R

G
1

  
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 Capacitor cc I
Cj

V


1
    cc CVjI     

Cj
jX



1
   CjjB   

 Inductor ll LIjV    ll I
Lj

V


1
    

Lj
jX



1
   LjjB    

ll IjXRZIV )(     ll IjBRYIV )(   

 

 

Example 2.1 

Describe the voltage )cos()(   tVtv in in terms of phasor. 

 

















in

j

in

tj

in

j

in

tj

in

in

VeVtv

eVeVeVtv

tVtv

)(

)()()(

)(

)})(Re{(}Re{)(

)cos()(

 
 

Example 2.2 

Represent the voltage )
6

sin(10)(   ttv in phasor notation. 

 

By definition the phasors are represented as the cosine part (the real part) of the 

complex function in time. Since )sin(
)2

cos(   , we need to convert our sin 

function into cos equivalent. 

)
3

cos(10
)26

cos(10)(   tttv  

The Figure 2.9 is the graphical representation of the voltage phasors 
)

3
(

10
j

eV


  
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Imaginary

axis

Real axis

6

10

V

 
*** Insert Figure 2.9 here *** 
 

Figure 2.9. The voltage phasor of Example 2.2 

 

Example 2.3 

If the current across the capacitor in a network is a function of time as shown in 

Figure 2.10. Write the equation of the current. 

 

 

-3 -2 -1 0 1 2 3 4 5 6 7

-11.0

-8.8

-6.6

-4.4

-2.2

0.0

2.2

4.4

6.6

8.8

11.0
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*** Insert Figure 2.10 here *** 
Figure 2.10. The voltage function for the Example 2.3 

 

 

A complete cycle is achieved in 1 second, thus, 

sec
2

12

sec/1

radians

cycleradians

cyclef











 

The current reaches its maximum value of 10 at 30 degree before the time t=0, 

thus the phase angle  

 deg30
6
   

The instantaneous current is 

}10Re{}10Re{}10Re{)(

)
6

2cos(10)(

)2()( 



jtjtj eeeti

tti







 

The phasor I 

AmpeI

eI

j

j

)
6

(

10

}10Re{








 

 

 

Example 2.4 

The sinusoidal 60 Hz AC input voltage to the circuit of Figure 2.11 is 110 V at its 

peak when t=0. Describe the instantaneous voltage in complex notation form. 

 

0

)602(

)()()(

max

max

110)(

110)(

)})(Re{(}Re{)(

)602cos(110)cos()(

0

602

110

















tv

etv

eVeVetv

twtVtv

V

tj

tjjtj











   

 

V

R

C
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*** Insert Figure 2.11 here *** 
 

Figure 2.11. The Voltage across the RC circuit for the Example 2.4 

 

 

Example 2.5 

Find the voltage outV  across the capacitor C of Figure 2.11 as a function of time 

for an input excitation of )cos()(   tVtv in   

 

Note: Determine the current through the loop and then calculate the voltage drop 

across the capacitor.  

 

The sum of the voltage drop across the resistor and the capacitor is equal to the 

input voltage applied. 

CRin VVV   

Cj
IIRtVin




1
)cos( 

 

The current I through the loop 

)cos(
1

1








 tV

Cj
R

I in   

The output voltage at the capacitor  

)cos(
1

11









 tV

Cj
R

Cj
V inout  

)cos(
1

1






 tV

Cj
V inout  

 

The magnitude of the output voltage 

)(tan
)(1

1

)(1

1 1

22
RC

RC
e

RC
V j

out 


 





    (2.9) 

 

The phase angle 

)(tan 1 RC          (2.10) 

 

Example 2.6 

In the circuit of Figure 2.11, input voltage is a 60 Hz AC, C=2 and R=2. Calculate 

the phase angle and the voltage on the capacitor C. 
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Substituting the values into equation 2.9 

 

 

The phase angle   

)1204(tantan 11    RC  

 

 

Example 2.7 

Find out the frequency at which the output voltage reaches 70 % of the input 

voltage in the circuit of Figure 2.11.  

 

Substituting the values into Equation 2.8: 

 

1

1)1(5.0

)(1

1
7.0

2








RC

RC

RCjV

V

in

out







 

The cutoff frequency is 

RC

1
        (2.11) 

Note: A cutoff frequency is the input frequency at which the output is 0.707 of 

the input. 

 

Example 2.8 

Determine the phase angle at the cutoff frequency in the circuit of Figure 2.11. 

 

Substituting the values into Equation 2.9: 
01 45)1(tan    

Note: at cutoff frequency the phase angle is 45
0 

. 

Low Pass Filter 

The Equation 2.9 reveals a peculiar property of the circuit in Figure 2.11 that at 

higher frequencies the output voltage gain is considerably lower then at lower 

frequencies due to the multiplying factor inV
RCj


 2)(1

1


. The circuit could 

be used to discriminate lower frequencies, as if lower frequencies are passing 

without much degradation. The circuit of Figure 2.1 is a simple low pass filter.  

 

Differentiation 

The circuit of Figure 2.8 is also a differentiator. The current across a capacitor is 

proportional to the rate of change of voltage. The same current is being fed to the 

resistor. Thus the output is approximately proportional to the derivative of the 

input voltage. 

)602cos(
)12022(1

1

1202

2
tV

f

c 











 25 

dt

dv
Cv   

We will discuss the differentiation and filtering more in the upcoming chapter of 

analog filter design. 

 

Example 2.9 

A 110 Volt 60 Hz AC input is applied to the circuit of Figure 2.11, with C=2 

Farads and R=2 Ohms. Determine the ratio of the output voltage across the 

capacitor to the input voltage. 

  

Substituting the values into Equation 2.8: 

2)2404(1

1

)0602cos(110










in

out

in

V

V

tV

 

 

Example 2.10 

If the frequency is reduced to 1 Hz in the previous example of 2.10, determine the 

improvement in the output voltage across the capacitor to the input voltage. 

  

Substituting the values into Equation 2.8: 

2)44(1

1

)02cos(110










in

out

in

V

V

tV

 

Nearly a 60 times improvement in the output at 1 Hz compare to the 60 Hz input. 

 

 

Example 2.11 

Determine the voltage and the phase angle across the resistor R in Figure 2.12 for 

an input voltage of )cos(  tVin  

 

V

C

R
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*** Insert Figure 2.12 here *** 
 

Figure 2.11. The Voltage across the RC circuit for the Example 2.11 

 

 

 

 

Similar to the Example 2.5 we need to determine the current through the loop and 

through that we can calculate the voltage across the resistor. The sum of the 

voltage drop across the resistor and the capacitor is equal to the input voltage 

applied. 

)cos(
1

1

1
)cos(
















tV

Cj
R

I

Cj
IIRtV

in

in

 

)cos(
1

1

1
)cos(

1
















 tV

RC
j

tV

Cj
R

R
V ininout   

The magnitude of the voltage across the resistor is 









j

ininout eV

RC

tV

RC

V

22 )(

1
1

1
)cos(

)(

1
1

1









   (2.12) 

 

 

The phase angle 

)
1

(tan 1

RC
           (2.13) 

 

High Pass Filter 

Compare the Equation 2.13 with the Equation 2.9.  The affect is now reverse; at 

higher frequencies the output voltage gain is considerably higher then at lower 

frequencies (the multiplying factor inV

RC




2)(

1
1

1



). The circuit could be used 

to discriminate higher frequencies, as they pass through with less degradation. 

The circuit of Figure 2.12 is a simple high pass filter.  

 

Integration 

The circuit of Figure 2.7 is also an integrator since the voltage across a capacitor 

gradually builds up in time. The output is approximately proportional to the 

integral of the input. 



 27 

 idt
C

v
1

 

We will discuss integration more in the upcoming chapter of analog filter design. 

 

 

Example 2.12 

In the circuit of Figure 2.13 the inductor L is 2 mH and the capacitor C is 4 uF. At 

what frequency the total impedance will be 0.  

 

V

C

H

 
 

*** Insert Figure 2.13 here *** 
 

Figure 2.11. The LC circuit for the Example 2.12 

 

The two imaginary components in the circuit are the capacitive reactance
RCj

1
 

and the inductive reactance Lj . There is no resistor so real component is 0. 

The impedance is 

 )
1

()0(
C

LZ


   

 

The impendence will be 0 when 
C

L



1

 .  

63 104102

11

 


LC
  

 

Resonance 

Having a 0 impedance indicates an infinite gain since the output voltage is 

supposed to have been divided by the impedance, which is now 0. But of course, 

in reality we don’t have ideal components, there is a certain amount of resistance 

in every inductor and in every capacitor. But the point is, when a capacitor is 

connected with an inductor in series there is always a frequency at which the both 

reactance just cancel each other and provide maximum gain at the output. The 

frequency at which the capacitive reactance is equal to the inductive reactance is 
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called the resonance frequency.  At resonance the only impedance is due to the 

resistive components.  

The resonance frequency is computed as 

LC

1
  

 

 

Example 2.13 

Use the phasor method to determine the current in the elements of the circuit of 

Figure 2.14. HLRFC 2,2,2  . The input voltage is .110 0V  and the 

frequency is 1 rad/sec. 

V
C

HR

 
 

*** Insert Figure 2.14 here *** 
Figure 2.11. The RLC circuit for the Example 2.13 

 

900

900

0

5555
1

2201102

110
2

1

1









jV
Lj

VYI

jCVjVYI

VYI

Cc

Cc

RR







   

Notice the multiplication of J is the same as a phase angle 90
0
 and the 

multiplication of -J is the same as a phase angle -90
0
. 

 

Example 2.14 

Use the phasor method to determine the total current through the elements of the 

circuit of Figure 2.11. HLRFC 2,2,2  . The input voltage is 

.110 0V and the frequency is 1 rad/sec.  

 

The total current is the sum of the individual currents. The Figure 2.15 shows the 

graphical addition the current phasors. 

 

IT = IR + IC + IL 
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*** Insert Figure 2.15 here *** 
Figure 2.15. The graphical method of computing current phasors 

 

 

Summary 
 

A complex number is a vector on a coordinate system representing 

amplitude and phase angle of a sinusoidal function. The two parts of a 

complex number are the real part (the x distance from the origin) and the 

imaginary part (the y-distance from the origin.) The imaginary part carries 

the operator 1  that performs the necessary algebraic manipulations of 

the imaginary part. The three different ways of representing a complex 

number namely the trigonometric form (x+jy), the polar form 
 MP and the exponent form jMe were discussed. The phasor 

method was developed (based on the complex number notation) to solve 

the electrical network problem where the input excitation is a sinusoidal 

form. The chapter gives you a brief overview of the problems that our 

digital signal processing is supposed to solve. 


